"""FastAPI endpoint To run locally use 'uvicorn app:app --host localhost --port 7860' or `python -m uvicorn app:app --reload --host localhost --port 7860` """ import ast import json import mathactive.microlessons.num_one as num_one_quiz import os import sentry_sdk from fastapi import FastAPI, Request from fastapi.responses import JSONResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates from mathtext.sentiment import sentiment from mathtext.text2int import text2int from pydantic import BaseModel from mathtext_fastapi.logging import prepare_message_data_for_logging from mathtext_fastapi.conversation_manager import manage_conversation_response from mathtext_fastapi.v2_conversation_manager import manage_conversation_response from mathtext_fastapi.nlu import evaluate_message_with_nlu from mathtext_fastapi.nlu import run_intent_classification from dotenv import load_dotenv from sentry_sdk.utils import BadDsn load_dotenv() try: sentry_sdk.init( dsn=os.environ.get('SENTRY_DNS'), # Set traces_sample_rate to 1.0 to capture 100% # of transactions for performance monitoring. # We recommend adjusting this value in production, traces_sample_rate=0.20, ) except BadDsn: pass app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") templates = Jinja2Templates(directory="templates") class Text(BaseModel): content: str = "" @app.get("/") def home(request: Request): return templates.TemplateResponse("home.html", {"request": request}) @app.get("/sentry-debug") async def trigger_error(): division_by_zero = 1 / 0 @app.post("/hello") def hello(content: Text = None): content = {"message": f"Hello {content.content}!"} return JSONResponse(content=content) @app.post("/sentiment-analysis") def sentiment_analysis_ep(content: Text = None): ml_response = sentiment(content.content) content = {"message": ml_response} return JSONResponse(content=content) @app.post("/text2int") def text2int_ep(content: Text = None): ml_response = text2int(content.content) content = {"message": ml_response} return JSONResponse(content=content) @app.post("/v1/manager") async def programmatic_message_manager(request: Request): """ Calls conversation management function to determine the next state Input request.body: dict - message data for the most recent user response { "author_id": "+47897891", "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", "author_type": "OWNER", "message_body": "a test message", "message_direction": "inbound", "message_id": "ABJAK64jlk3-agjkl2QHFAFH", "message_inserted_at": "2022-07-05T04:00:34.03352Z", "message_updated_at": "2023-02-14T03:54:19.342950Z", } Output context: dict - the information for the current state { "user": "47897891", "state": "welcome-message-state", "bot_message": "Welcome to Rori!", "user_message": "", "type": "ask" } """ data_dict = await request.json() context = manage_conversation_response(data_dict) return JSONResponse(context) @app.post("/v2/manager") async def programmatic_message_manager(request: Request): """ Calls conversation management function to determine the next state Input request.body: dict - message data for the most recent user response { "author_id": "+47897891", "contact_uuid": "j43hk26-2hjl-43jk-hnk2-k4ljl46j0ds09", "author_type": "OWNER", "message_body": "a test message", "message_direction": "inbound", "message_id": "ABJAK64jlk3-agjkl2QHFAFH", "message_inserted_at": "2022-07-05T04:00:34.03352Z", "message_updated_at": "2023-02-14T03:54:19.342950Z", } Output context: dict - the information for the current state { "user": "47897891", "state": "welcome-message-state", "bot_message": "Welcome to Rori!", "user_message": "", "type": "ask" } """ data_dict = await request.json() context = manage_conversation_response(data_dict) return JSONResponse(context) @app.post("/intent-classification") def intent_classification_ep(content: Text = None): ml_response = run_intent_classification(content.content) content = {"message": ml_response} return JSONResponse(content=content) @app.post("/nlu") async def evaluate_user_message_with_nlu_api(request: Request): """ Calls nlu evaluation and returns the nlu_response Input - request.body: json - message data for the most recent user response Output - int_data_dict or sent_data_dict: dict - the type of NLU run and result {'type':'integer', 'data': '8', 'confidence': 0} {'type':'sentiment', 'data': 'negative', 'confidence': 0.99} """ data_dict = await request.json() message_data = data_dict.get('message_data', '') nlu_response = evaluate_message_with_nlu(message_data) return JSONResponse(content=nlu_response) @app.post("/num_one") async def num_one(request: Request): """ Input: { "user_id": 1, "message_text": 5, } Output: { 'messages': ["Let's", 'practice', 'counting', '', '', '46...', '47...', '48...', '49', '', '', 'After', '49,', 'what', 'is', 'the', 'next', 'number', 'you', 'will', 'count?\n46,', '47,', '48,', '49'], 'input_prompt': '50', 'state': 'question' } """ print("STEP 1") data_dict = await request.json() message_data = json.loads(data_dict.get('message_data', '').get('message_body', '').replace("'", '"')) user_id = message_data['user_id'] message_text = message_data['message_text'] print("STEP 2") return num_one_quiz.process_user_message(user_id, message_text) @app.post("/start") async def ask_math_question(request: Request): """Generate a question data Input { 'difficulty': 0.1, 'do_increase': True | False } Output { 'text': 'What is 1+2?', 'difficulty': 0.2, 'question_numbers': [3, 1, 4] } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) difficulty = message_data['difficulty'] do_increase = message_data['do_increase'] return JSONResponse(generators.start_interactive_math(difficulty, do_increase)) @app.post("/hint") async def get_hint(request: Request): """Generate a hint data Input { 'start': 5, 'step': 1, 'difficulty': 0.1 } Output { 'text': 'What number is greater than 4 and less than 6?', 'difficulty': 0.1, 'question_numbers': [5, 1, 6] } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) start = message_data['start'] step = message_data['step'] difficulty = message_data['difficulty'] return JSONResponse(hints.generate_hint(start, step, difficulty)) @app.post("/question") async def ask_math_question(request: Request): """Generate a question data Input { 'start': 5, 'step': 1, 'question_num': 1 # optional } Output { 'question': 'What is 1+2?', 'start': 5, 'step': 1, 'answer': 6 } """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) start = message_data['start'] step = message_data['step'] arg_tuple = (start, step) try: question_num = message_data['question_num'] arg_tuple += (question_num,) except KeyError: pass return JSONResponse(questions.generate_question_data(*arg_tuple)) @app.post("/difficulty") async def get_hint(request: Request): """Generate a number matching difficulty Input { 'difficulty': 0.01, 'do_increase': True } Output - value from 0.01 to 0.99 inclusively: 0.09 """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) difficulty = message_data['difficulty'] do_increase = message_data['do_increase'] return JSONResponse(utils.get_next_difficulty(difficulty, do_increase)) @app.post("/start_step") async def get_hint(request: Request): """Generate a start and step values Input { 'difficulty': 0.01, 'path_to_csv_file': 'scripts/quiz/data.csv' # optional } Output - tuple (start, step): (5, 1) """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) difficulty = message_data['difficulty'] arg_tuple = (difficulty,) try: path_to_csv_file = message_data['path_to_csv_file'] arg_tuple += (path_to_csv_file,) except KeyError: pass return JSONResponse(utils.get_next_difficulty(*arg_tuple)) @app.post("/sequence") async def generate_question(request: Request): """Generate a sequence from start, step and optional separator parameter Input { 'start': 5, 'step': 1, 'sep': ', ' # optional } Output 5, 6, 7 """ data_dict = await request.json() message_data = ast.literal_eval(data_dict.get('message_data', '').get('message_body', '')) start = message_data['start'] step = message_data['step'] arg_tuple = (start, step) try: sep = message_data['sep'] arg_tuple += (sep,) except KeyError: pass return JSONResponse(utils.convert_sequence_to_string(*arg_tuple))