File size: 6,882 Bytes
a0be272
 
 
c0a7489
 
a0be272
 
 
 
830bcbc
c0a7489
830bcbc
1346128
830bcbc
 
 
a0be272
1346128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0be272
1346128
 
a0be272
 
 
 
 
 
830bcbc
a0be272
 
 
 
 
 
 
 
 
 
 
 
 
1346128
a0be272
 
 
 
 
 
 
 
 
 
 
 
1346128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0be272
1346128
 
a0be272
1346128
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830bcbc
1346128
 
 
 
 
 
 
 
 
830bcbc
 
1346128
 
 
1b6c331
1346128
 
 
 
 
 
 
 
830bcbc
1346128
 
 
830bcbc
1346128
 
 
 
 
830bcbc
a0be272
 
 
1b6c331
a0be272
 
 
 
 
1346128
a0be272
 
 
 
1346128
830bcbc
 
1346128
 
 
 
a0be272
1346128
 
 
830bcbc
a0be272
 
1346128
 
 
a0be272
 
1346128
 
 
a0be272
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
from __future__ import annotations

import os
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"

import gradio as gr
import numpy as np
import torch
import nltk  # we'll use this to split into sentences
nltk.download('punkt')
import uuid
import soundfile as SF

from TTS.api import TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True)

title = "Speak with Llama2 70B"

DESCRIPTION = """# Speak with Llama2 70B

This Space demonstrates how to speak to a chatbot, based solely on open-source models.
It relies on 3 models:
1. [Whisper-large-v2](https://huggingface.co/spaces/sanchit-gandhi/whisper-large-v2) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
2. [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) as the chat model, the actual chat model. It is also called through a [gradio client](https://www.gradio.app/docs/client).
3. [Coqui's XTTS](https://huggingface.co/spaces/coqui/xtts) as a TTS model, to generate the chatbot answers. This time, the model is hosted locally.


Note: 
- As a derivate work of [Llama-2-70b-chat](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/USE_POLICY.md).
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml
"""
css = """.toast-wrap { display: none !important } """


system_message = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
temperature = 0.9
top_p = 0.6
repetition_penalty = 1.2


import gradio as gr
import os
import time

import gradio as gr
from transformers import pipeline
import numpy as np

from gradio_client import Client

whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
text_client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/")


def transcribe(wav_path):
    
    return whisper_client.predict(
				wav_path,	# str (filepath or URL to file) in 'inputs' Audio component
				"transcribe",	# str in 'Task' Radio component
				api_name="/predict"
)
    

# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.


def add_text(history, text, agree):
    if agree == True:
        history = [] if history is None else history
        history = history + [(text, None)]
        return history, gr.update(value="", interactive=False)
    else:
        gr.Warning("Please accept the Terms & Condition!")
        return None, gr.update(value="", interactive=True)

def add_file(history, file, agree):
    if agree == True:
        history = [] if history is None else history
        text = transcribe(
            file
        )
        
        history = history + [(text, None)]
        return history
    else:
        gr.Warning("Please accept the Terms & Condition!")
        return None


def bot(history, agree, system_prompt=""):
    
    if agree==True:
        history = [] if history is None else history

        if system_prompt == "":
            system_prompt = system_message
            
        history[-1][1] = ""
        for character in text_client.submit(
                        history,
                        system_prompt,
                        temperature,
                        4096,
                        temperature,
                        repetition_penalty,
                        api_name="/chat"
        ):
            history[-1][1] = character
            yield history  
    else:        
        gr.Warning("Please accept the Terms & Condition!")
        return None
    
def generate_speech(history, agree):
    if agree==True:
        text_to_generate = history[-1][1]
        text_to_generate = text_to_generate.replace("\n", " ").strip()
        text_to_generate = nltk.sent_tokenize(text_to_generate)
        
        filename = f"{uuid.uuid4()}.wav"
        sampling_rate = tts.synthesizer.tts_config.audio["sample_rate"]
        silence = [0] * int(0.25 * sampling_rate)

        
        for sentence in text_to_generate:
            # generate speech by cloning a voice using default settings
            wav = tts.tts(text=sentence,
                        speaker_wav="examples/female.wav",
                        decoder_iterations=20,
                        speed=1.2,
                        language="en")
            
            yield (sampling_rate, np.array(wav)) #np.array(wav + silence))
    else:        
        gr.Warning("Please accept the Terms & Condition!")
        return None
        

with gr.Blocks(title=title) as demo:
    gr.Markdown(DESCRIPTION)
    
    agree = gr.Checkbox(
        label="Agree",
        value=False,
        info="I agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml",
    )
    
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        avatar_images=('examples/lama.jpeg', 'examples/lama2.jpeg'),
        bubble_full_width=False,
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=1,
            show_label=False,
            placeholder="Enter text and press enter, or speak to your microphone",
            container=False,
        )
        btn = gr.Audio(source="microphone", type="filepath", scale=2)
        
    with gr.Row():
        audio = gr.Audio(type="numpy", streaming=True, autoplay=True, label="Generated audio response", show_label=True)

    clear_btn = gr.ClearButton([chatbot, audio])
    

    txt_msg = txt.submit(add_text, [chatbot, txt, agree], [chatbot, txt], queue=False).then(
        bot, [chatbot, agree], chatbot
    ).then(generate_speech, [chatbot, agree], audio)
    
    txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
    
    file_msg = btn.stop_recording(add_file, [chatbot, btn, agree], [chatbot], queue=False).then(
        bot, [chatbot, agree], chatbot
    ).then(generate_speech, [chatbot, agree], audio)
    

    gr.Markdown("""<div style='margin:20px auto;'>
<p>By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml</p>
</div>""")
demo.queue()
demo.launch(debug=True)