File size: 7,481 Bytes
a0be272
 
 
c0a7489
 
a0be272
 
 
 
830bcbc
c0a7489
830bcbc
 
 
 
a0be272
3922171
1346128
3922171
1346128
 
a80fddf
b6e65e4
 
 
a0be272
b6e65e4
fbacfdf
3922171
a0be272
 
 
 
830bcbc
a0be272
 
 
 
 
 
 
 
 
3922171
 
a0be272
 
3922171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8166583
3922171
 
 
 
 
 
a0be272
1346128
a0be272
 
 
 
 
 
 
 
 
 
 
 
112a38f
fbacfdf
 
 
 
1346128
112a38f
fbacfdf
 
 
 
 
 
 
a0be272
1346128
fbacfdf
112a38f
fbacfdf
 
 
 
 
 
245ae02
fbacfdf
 
 
a0be272
fbacfdf
 
 
 
830bcbc
fbacfdf
 
 
830bcbc
fbacfdf
 
b6e65e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a081a3
b6e65e4
 
 
 
 
 
 
 
 
1346128
 
 
830bcbc
 
a0be272
 
 
1b6c331
a0be272
 
 
 
 
112a38f
a0be272
 
 
 
112a38f
 
830bcbc
 
1346128
 
 
 
112a38f
 
 
a0be272
dd0934b
 
fbacfdf
 
 
830bcbc
a0be272
 
fbacfdf
 
 
a0be272
 
fbacfdf
 
 
 
3922171
fbacfdf
 
 
 
a0be272
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
from __future__ import annotations

import os
# By using XTTS you agree to CPML license https://coqui.ai/cpml
os.environ["COQUI_TOS_AGREED"] = "1"

import gradio as gr
import numpy as np
import torch
import nltk  # we'll use this to split into sentences
nltk.download('punkt')
import uuid

from TTS.api import TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True)

title = "Voice chat with Mistral 7B Instruct"

DESCRIPTION = """# Voice chat with Mistral 7B Instruct"""
css = """.toast-wrap { display: none !important } """

from huggingface_hub import HfApi
HF_TOKEN = os.environ.get("HF_TOKEN")
# will use api to restart space on a unrecoverable error
api = HfApi(token=HF_TOKEN)

repo_id = "ylacombe/voice-chat-with-lama"

system_message = "\nYou are a helpful, respectful and honest assistant. Your answers are short, ideally a few words long, if it is possible. Always answer as helpfully as possible, while being safe.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
temperature = 0.9
top_p = 0.6
repetition_penalty = 1.2


import gradio as gr
import os
import time

import gradio as gr
from transformers import pipeline
import numpy as np

from gradio_client import Client
from huggingface_hub import InferenceClient


whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
text_client = InferenceClient(
    "mistralai/Mistral-7B-Instruct-v0.1"
)


def format_prompt(message, history):
  prompt = "<s>"
  for user_prompt, bot_response in history:
    prompt += f"[INST] {user_prompt} [/INST]"
    prompt += f" {bot_response}</s> "
  prompt += f"[INST] {message} [/INST]"
  return prompt

def generate(
    prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(prompt, history)

    stream = text_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output


def transcribe(wav_path):
    
    return whisper_client.predict(
				wav_path,	# str (filepath or URL to file) in 'inputs' Audio component
				"transcribe",	# str in 'Task' Radio component
				api_name="/predict"
)
    

# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.


def add_text(history, text):
    history = [] if history is None else history
    history = history + [(text, None)]
    return history, gr.update(value="", interactive=False)


def add_file(history, file):
    history = [] if history is None else history
    text = transcribe(
        file
    )
    
    history = history + [(text, None)]
    return history



def bot(history, system_prompt=""):    
    history = [] if history is None else history

    if system_prompt == "":
        system_prompt = system_message
        
    history[-1][1] = ""
    for character in generate(history[-1][0], history[:-1]):
        history[-1][1] = character
        yield history  

    
def generate_speech(history):
    text_to_generate = history[-1][1]
    text_to_generate = text_to_generate.replace("\n", " ").strip()
    text_to_generate = nltk.sent_tokenize(text_to_generate)
    
    filename = f"{uuid.uuid4()}.wav"
    sampling_rate = tts.synthesizer.tts_config.audio["sample_rate"]
    silence = [0] * int(0.25 * sampling_rate)

    
    for sentence in text_to_generate:
        try:   

            # generate speech by cloning a voice using default settings
            wav = tts.tts(text=sentence,
                        speaker_wav="examples/female.wav",
                        decoder_iterations=25,
                        decoder_sampler="dpm++2m",
                        speed=1.2,
                        language="en")
            
            yield (sampling_rate, np.array(wav)) #np.array(wav + silence))

        except RuntimeError as e :
            if "device-side assert" in str(e):
                # cannot do anything on cuda device side error, need tor estart
                print(f"Exit due to: Unrecoverable exception caused by prompt:{sentence}", flush=True)
                gr.Warning("Unhandled Exception encounter, please retry in a minute")
                print("Cuda device-assert Runtime encountered need restart")

                
                # HF Space specific.. This error is unrecoverable need to restart space 
                api.restart_space(repo_id=repo_id)
            else:
                print("RuntimeError: non device-side assert error:", str(e))
                raise e

with gr.Blocks(title=title) as demo:
    gr.Markdown(DESCRIPTION)
    
    
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        avatar_images=('examples/lama.jpeg', 'examples/lama2.jpeg'),
        bubble_full_width=False,
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=3,
            show_label=False,
            placeholder="Enter text and press enter, or speak to your microphone",
            container=False,
        )
        txt_btn = gr.Button(value="Submit text",scale=1)
        btn = gr.Audio(source="microphone", type="filepath", scale=4)
        
    with gr.Row():
        audio = gr.Audio(type="numpy", streaming=True, autoplay=True, label="Generated audio response", show_label=True)

    clear_btn = gr.ClearButton([chatbot, audio])
    
    txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
        bot, chatbot, chatbot
    ).then(generate_speech, chatbot, audio)

    txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)

    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
        bot, chatbot, chatbot
    ).then(generate_speech, chatbot, audio)
    
    txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
    
    file_msg = btn.stop_recording(add_file, [chatbot, btn], [chatbot], queue=False).then(
        bot, chatbot, chatbot
    ).then(generate_speech, chatbot, audio)
    

    gr.Markdown("""
This Space demonstrates how to speak to a chatbot, based solely on open-source models.
It relies on 3 models:
1. [Whisper-large-v2](https://huggingface.co/spaces/sanchit-gandhi/whisper-large-v2) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client).
2. [Mistral-7b-instruct](https://huggingface.co/spaces/osanseviero/mistral-super-fast) as the chat model, the actual chat model. It is called from [huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/inference).
3. [Coqui's XTTS](https://huggingface.co/spaces/coqui/xtts) as a TTS model, to generate the chatbot answers. This time, the model is hosted locally.

Note:
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml""")
demo.queue()
demo.launch(debug=True)