File size: 4,178 Bytes
a0be272
 
 
 
 
 
 
830bcbc
 
 
 
 
a0be272
 
 
 
 
830bcbc
 
a0be272
 
 
 
 
830bcbc
a0be272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830bcbc
a0be272
 
 
 
 
 
 
 
830bcbc
a0be272
 
830bcbc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a0be272
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
830bcbc
 
 
a0be272
 
 
830bcbc
 
a0be272
 
 
 
830bcbc
a0be272
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
from __future__ import annotations

import os

import gradio as gr
import numpy as np
import torch
import nltk  # we'll use this to split into sentences
import uuid

from TTS.api import TTS
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True)

DESCRIPTION = """# Speak with Llama2
TODO
"""

CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"

system_message = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
temperature = 0.9
top_p = 0.6
repetition_penalty = 1.2


import gradio as gr
import os
import time

import gradio as gr
from transformers import pipeline
import numpy as np

from gradio_client import Client

whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/")
text_client = Client("https://ysharma-explore-llamav2-with-tgi.hf.space/")

def transcribe(wav_path):
    
    return whisper_client.predict(
				wav_path,	# str (filepath or URL to file) in 'inputs' Audio component
				"transcribe",	# str in 'Task' Radio component
				api_name="/predict"
)
    

# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text.


def add_text(history, text):
    history = history + [(text, None)]
    return history, gr.update(value="", interactive=False)

def add_file(history, file):
    text = transcribe(
        file
    )
    
    
    history = history + [(text, None)]
    return history


def bot(history):

    history[-1][1] = ""
    for character in text_client.submit(
                    history,
                    system_message,
                    temperature,
                    4096,
                    temperature,
                    repetition_penalty,
                    api_name="/chat"
    ):
        history[-1][1] = character
        yield history

def generate_speech(history):
    text_to_generate = history[-1][1]
    text_to_generate = text_to_generate.replace("\n", " ").strip()
    text_to_generate = nltk.sent_tokenize(text_to_generate)
    
    filename = f"{uuid.uuid4()}.wav"
    sampling_rate = tts.synthesizer.tts_config.audio["sample_rate"]
    silence = [0] * int(0.25 * sampling_rate)

    
    for sentence in text_to_generate:
        # generate speech by cloning a voice using default settings
        wav = tts.tts(text=sentence,
                    #speaker_wav="/home/yoach/spaces/talkWithLLMs/examples/female.wav",
                      speed=1.5,
                    language="en")
        
        yield (sampling_rate, np.array(wav)) #np.array(wav + silence))
        
    
    

with gr.Blocks() as demo:
    chatbot = gr.Chatbot(
        [],
        elem_id="chatbot",
        bubble_full_width=False,
        avatar_images=(None, (os.path.join(os.path.dirname(__file__), "avatar.png"))),
    )

    with gr.Row():
        txt = gr.Textbox(
            scale=4,
            show_label=False,
            placeholder="Enter text and press enter, or speak to your microphone",
            container=False,
        )
        btn = gr.inputs.Audio(source="microphone", type="filepath", optional=True)
        
    with gr.Row():
        audio = gr.Audio(type="numpy", streaming=True, autoplay=True)

    txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then(
        bot, chatbot, chatbot
    ).then(generate_speech, chatbot, audio)
    
    txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)
    
    file_msg = btn.stop_recording(add_file, [chatbot, btn], [chatbot], queue=False).then(
        bot, chatbot, chatbot
    ).then(generate_speech, chatbot, audio)
    
    #file_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False)

demo.queue()
demo.launch(debug=True)