Spaces:
Runtime error
Runtime error
from __future__ import annotations | |
import os | |
# By using XTTS you agree to CPML license https://coqui.ai/cpml | |
os.environ["COQUI_TOS_AGREED"] = "1" | |
import gradio as gr | |
import numpy as np | |
import torch | |
import nltk # we'll use this to split into sentences | |
nltk.download('punkt') | |
import uuid | |
from TTS.api import TTS | |
tts = TTS("tts_models/multilingual/multi-dataset/xtts_v1", gpu=True) | |
title = "Voice chat with Mistral 7B Instruct" | |
DESCRIPTION = """# Voice chat with Mistral 7B Instruct""" | |
css = """.toast-wrap { display: none !important } """ | |
from huggingface_hub import HfApi | |
HF_TOKEN = os.environ.get("HF_TOKEN") | |
# will use api to restart space on a unrecoverable error | |
api = HfApi(token=HF_TOKEN) | |
repo_id = "ylacombe/voice-chat-with-lama" | |
system_message = "\nYou are a helpful, respectful and honest assistant. Your answers are short, ideally a few words long, if it is possible. Always answer as helpfully as possible, while being safe.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information." | |
temperature = 0.9 | |
top_p = 0.6 | |
repetition_penalty = 1.2 | |
import gradio as gr | |
import os | |
import time | |
import gradio as gr | |
from transformers import pipeline | |
import numpy as np | |
from gradio_client import Client | |
from huggingface_hub import InferenceClient | |
whisper_client = Client("https://sanchit-gandhi-whisper-large-v2.hf.space/") | |
text_client = InferenceClient( | |
"mistralai/Mistral-7B-Instruct-v0.1" | |
) | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = text_client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
def transcribe(wav_path): | |
return whisper_client.predict( | |
wav_path, # str (filepath or URL to file) in 'inputs' Audio component | |
"transcribe", # str in 'Task' Radio component | |
api_name="/predict" | |
) | |
# Chatbot demo with multimodal input (text, markdown, LaTeX, code blocks, image, audio, & video). Plus shows support for streaming text. | |
def add_text(history, text): | |
history = [] if history is None else history | |
history = history + [(text, None)] | |
return history, gr.update(value="", interactive=False) | |
def add_file(history, file): | |
history = [] if history is None else history | |
text = transcribe( | |
file | |
) | |
history = history + [(text, None)] | |
return history | |
def bot(history, system_prompt=""): | |
history = [] if history is None else history | |
if system_prompt == "": | |
system_prompt = system_message | |
history[-1][1] = "" | |
for character in generate(system_prompt, history): | |
history[-1][1] = character | |
yield history | |
def generate_speech(history): | |
text_to_generate = history[-1][1] | |
text_to_generate = text_to_generate.replace("\n", " ").strip() | |
text_to_generate = nltk.sent_tokenize(text_to_generate) | |
filename = f"{uuid.uuid4()}.wav" | |
sampling_rate = tts.synthesizer.tts_config.audio["sample_rate"] | |
silence = [0] * int(0.25 * sampling_rate) | |
for sentence in text_to_generate: | |
try: | |
# generate speech by cloning a voice using default settings | |
wav = tts.tts(text=sentence, | |
speaker_wav="examples/female.wav", | |
decoder_iterations=25, | |
decoder_sampler="dpm++2m", | |
speed=1.2, | |
language="en") | |
yield (sampling_rate, np.array(wav)) #np.array(wav + silence)) | |
except RuntimeError as e : | |
if "device-side assert" in str(e): | |
# cannot do anything on cuda device side error, need tor estart | |
print(f"Exit due to: Unrecoverable exception caused by prompt:{sentence}", flush=True) | |
gr.Warning("Unhandled Exception encounter, please retry in a minute") | |
print("Cuda device-assert Runtime encountered need restart") | |
# HF Space specific.. This error is unrecoverable need to restart space | |
api.restart_space(repo_id=repo_id) | |
else: | |
print("RuntimeError: non device-side assert error:", str(e)) | |
raise e | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(DESCRIPTION) | |
chatbot = gr.Chatbot( | |
[], | |
elem_id="chatbot", | |
avatar_images=('examples/lama.jpeg', 'examples/lama2.jpeg'), | |
bubble_full_width=False, | |
) | |
with gr.Row(): | |
txt = gr.Textbox( | |
scale=3, | |
show_label=False, | |
placeholder="Enter text and press enter, or speak to your microphone", | |
container=False, | |
) | |
txt_btn = gr.Button(value="Submit text",scale=1) | |
btn = gr.Audio(source="microphone", type="filepath", scale=4) | |
with gr.Row(): | |
audio = gr.Audio(type="numpy", streaming=True, autoplay=True, label="Generated audio response", show_label=True) | |
clear_btn = gr.ClearButton([chatbot, audio]) | |
txt_msg = txt_btn.click(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, chatbot, chatbot | |
).then(generate_speech, chatbot, audio) | |
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False) | |
txt_msg = txt.submit(add_text, [chatbot, txt], [chatbot, txt], queue=False).then( | |
bot, chatbot, chatbot | |
).then(generate_speech, chatbot, audio) | |
txt_msg.then(lambda: gr.update(interactive=True), None, [txt], queue=False) | |
file_msg = btn.stop_recording(add_file, [chatbot, btn], [chatbot], queue=False).then( | |
bot, chatbot, chatbot | |
).then(generate_speech, chatbot, audio) | |
gr.Markdown(""" | |
This Space demonstrates how to speak to a chatbot, based solely on open-source models. | |
It relies on 3 models: | |
1. [Whisper-large-v2](https://huggingface.co/spaces/sanchit-gandhi/whisper-large-v2) as an ASR model, to transcribe recorded audio to text. It is called through a [gradio client](https://www.gradio.app/docs/client). | |
2. [Mistral-7b-instruct](https://huggingface.co/spaces/osanseviero/mistral-super-fast) as the chat model, the actual chat model. It is called from [huggingface_hub](https://huggingface.co/docs/huggingface_hub/guides/inference). | |
3. [Coqui's XTTS](https://huggingface.co/spaces/coqui/xtts) as a TTS model, to generate the chatbot answers. This time, the model is hosted locally. | |
Note: | |
- By using this demo you agree to the terms of the Coqui Public Model License at https://coqui.ai/cpml""") | |
demo.queue() | |
demo.launch(debug=True) |