thoristhor's picture
Migrade from GPT_index to LLama Index
6dba01e
raw
history blame
1.69 kB
import os
import gradio as gr
import pinecone
from llama_index import GPTIndexMemory, GPTPineconeIndex
from langchain.agents import Tool
from langchain.chains.conversation.memory import ConversationBufferMemory
from langchain import OpenAI
from langchain.agents import initialize_agent
OPENAI_API_KEY=os.environ["OPENAI_API_KEY"]
PINECONE_API_KEY=os.environ["PINECONE_API_KEY"]
pinecone.init(api_key=PINECONE_API_KEY, environment="us-east1-gcp")
pindex=pinecone.Index("sejarah")
indexed_pinecone=GPTPineconeIndex([], pinecone_index=pindex)
tools = [
Tool(
name = "GPT Index",
func=lambda q: str(indexed_pinecone.query(q)),
description="useful for when you want to answer questions about the author. The input to this tool should be a complete english sentence.",
return_direct=True
)
]
memory = GPTIndexMemory(index=indexed_pinecone, memory_key="chat_history", query_kwargs={"response_mode": "compact"})
llm=OpenAI(temperature=0, model_name="gpt-3.5-turbo")
agent_chain = initialize_agent(tools, llm, agent="conversational-react-description", memory=memory, verbose=True)
def predict(input, history=[]):
response = agent_chain.run(input)
history = history + [(input, response)]
response = history
# response = [response]
# return response, response
return response, response
with gr.Blocks() as demo:
chatbot = gr.Chatbot()
state = gr.State([])
with gr.Row():
txt = gr.Textbox(show_label=False, placeholder="Enter text and press enter").style(container=False)
txt.submit(predict, [txt, state], [chatbot, state])
# txt.submit(agent_executor.run, [txt, state], [chatbot, state])
demo.launch()