Spaces:
Running
Running
File size: 2,572 Bytes
11f0a1f 25c148e 11f0a1f 25c148e 11f0a1f 0b464ee 11f0a1f 0b464ee 11f0a1f 0b464ee 11f0a1f 0b464ee 11f0a1f 0b464ee 11f0a1f 0b464ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
import gradio as gr
import huggingface_hub
import onnxruntime as rt
import numpy as np
import cv2
def get_mask(img, s=1024):
img = (img / 255).astype(np.float32)
h, w = h0, w0 = img.shape[:-1]
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s)
ph, pw = s - h, s - w
img_input = np.zeros([s, s, 3], dtype=np.float32)
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h))
img_input = np.transpose(img_input, (2, 0, 1))
img_input = img_input[np.newaxis, :]
mask = rmbg_model.run(None, {'img': img_input})[0][0]
mask = np.transpose(mask, (1, 2, 0))
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w]
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis]
return mask
def rmbg_fn(img, bg_color):
mask = get_mask(img)
if bg_color == "้้":
img_with_bg = (mask * img + 255 * (1 - mask)).astype(np.uint8)
mask = (mask * 255).astype(np.uint8)
img_with_bg = np.concatenate([img_with_bg, mask], axis=2, dtype=np.uint8)
else: # ็ฝ่ฒ่ๆฏ
foreground = mask * img
background = 255 * (1 - mask) # ็ฝ่ๆฏ
img_with_bg = (foreground + background).astype(np.uint8)
mask = mask.repeat(3, axis=2)
return mask, img_with_bg
if __name__ == "__main__":
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider']
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx")
rmbg_model = rt.InferenceSession(model_path, providers=providers)
app = gr.Blocks()
with app:
gr.Markdown("# Anime Remove Background\n\n"
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.animeseg)\n\n"
"demo for [https://github.com/SkyTNT/anime-segmentation/](https://github.com/SkyTNT/anime-segmentation/)")
with gr.Row():
with gr.Column():
input_img = gr.Image(label="input image")
bg_color = gr.Radio(choices=["้้", "็ฝ่ฒ"], value="้้", label="่ๆฏ่ฒ")
examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)]
examples = gr.Dataset(components=[input_img], samples=examples_data)
run_btn = gr.Button(variant="primary")
output_mask = gr.Image(label="mask")
output_img = gr.Image(label="result", image_mode="RGBA")
examples.click(lambda x: x[0], [examples], [input_img])
run_btn.click(rmbg_fn, [input_img, bg_color], [output_mask, output_img])
app.launch(server_name='0.0.0.0')
|