Spaces:
Running
Running
import gradio as gr | |
import huggingface_hub | |
import onnxruntime as rt | |
import numpy as np | |
import cv2 | |
def get_mask(img, s=1024): | |
img = (img / 255).astype(np.float32) | |
h, w = h0, w0 = img.shape[:-1] | |
h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) | |
ph, pw = s - h, s - w | |
img_input = np.zeros([s, s, 3], dtype=np.float32) | |
img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h)) | |
img_input = np.transpose(img_input, (2, 0, 1)) | |
img_input = img_input[np.newaxis, :] | |
mask = rmbg_model.run(None, {'img': img_input})[0][0] | |
mask = np.transpose(mask, (1, 2, 0)) | |
mask = mask[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] | |
mask = cv2.resize(mask, (w0, h0))[:, :, np.newaxis] | |
return mask | |
def rmbg_fn(img, bg_color): | |
mask = get_mask(img) | |
if bg_color == "้้": | |
img_with_bg = (mask * img + 255 * (1 - mask)).astype(np.uint8) | |
mask = (mask * 255).astype(np.uint8) | |
img_with_bg = np.concatenate([img_with_bg, mask], axis=2, dtype=np.uint8) | |
else: # ็ฝ่ฒ่ๆฏ | |
foreground = mask * img | |
background = 255 * (1 - mask) # ็ฝ่ๆฏ | |
img_with_bg = (foreground + background).astype(np.uint8) | |
mask = mask.repeat(3, axis=2) | |
return mask, img_with_bg | |
if __name__ == "__main__": | |
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] | |
model_path = huggingface_hub.hf_hub_download("skytnt/anime-seg", "isnetis.onnx") | |
rmbg_model = rt.InferenceSession(model_path, providers=providers) | |
app = gr.Blocks() | |
with app: | |
gr.Markdown("# Anime Remove Background\n\n" | |
"![visitor badge](https://visitor-badge.glitch.me/badge?page_id=skytnt.animeseg)\n\n" | |
"demo for [https://github.com/SkyTNT/anime-segmentation/](https://github.com/SkyTNT/anime-segmentation/)") | |
with gr.Row(): | |
with gr.Column(): | |
input_img = gr.Image(label="input image") | |
bg_color = gr.Radio(choices=["้้", "็ฝ่ฒ"], value="้้", label="่ๆฏ่ฒ") | |
examples_data = [[f"examples/{x:02d}.jpg"] for x in range(1, 4)] | |
examples = gr.Dataset(components=[input_img], samples=examples_data) | |
run_btn = gr.Button(variant="primary") | |
output_mask = gr.Image(label="mask") | |
output_img = gr.Image(label="result", image_mode="RGBA") | |
examples.click(lambda x: x[0], [examples], [input_img]) | |
run_btn.click(rmbg_fn, [input_img, bg_color], [output_mask, output_img]) | |
app.launch(server_name='0.0.0.0') | |