Spaces:
Running
Running
File size: 25,113 Bytes
976cf27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
import argparse
from collections import defaultdict
import datetime
import json
import os, sys
import time
import concurrent
import math
import gradio as gr
import requests
import logging
import numpy as np
import matplotlib.pyplot as plt
import fairseq
fairseq_path = os.path.dirname(os.path.dirname(fairseq.__file__))
sys.path.insert(1, f"{fairseq_path}")
from fs_plugins.models.glat_decomposed_with_link import GlatDecomposedLink
sys.path.insert(1, f"{fairseq_path}/examples")
from mass.s2s_model import TransformerMASSModel
from transformer.hub_interface import TransformerHubInterface
logger = logging.getLogger(__name__)
notice_markdown = ("""
# Directed Acyclic Transformer: A Non-Autoregressive Sequence-to-Sequence Model designed for Parallel Text Generation.
- **Fast Generation**: DA-Transformer offers faster inference compared to autoregressive Transformers (with fairseq implementation), with a reduction in latency by 7~14x and an increase in throughput by ~20x.
- **High Quality**: DA-Transformer performs competitively with autoregressive Transformers, even with pre-trained models like BART, in a variety of text generation tasks.
- **Easy Training**: DA-Transformer can be trained end-to-end without requiring knowledge distillation, making it simple and straightforward to train.
## Resources
- [[Github]](https://github.com/thu-coai/DA-Transformer)
- Papers: [[Machine Translation]](https://proceedings.mlr.press/v162/huang22m/huang22m.pdf) [[Pre-training]](https://arxiv.org/pdf/2304.11791.pdf)
## Terms of use
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It does not gaurantee the correctness of the output text. The service may collect user data for future research.
## This demo contains models
- [En-De Translation]()
- [Zh-En Translation]()
- [Question Generation]()
""")
learn_more_markdown = ("""
""")
css = """
pre {
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
"""
available_models = {
"dat_base_translation_ende": {
"class": GlatDecomposedLink,
"args":{
"model_name_or_path": "hfhub://thu-coai/dat_base_translation_ende",
"decode_strategy": "beamsearch",
"decode_max_workers": 1,
"decode_threads_per_worker": 4,
"decode_dedup": True,
"decode_alpha": 1.1,
"decode_gamma": 0,
"decode_beam_size": 200,
"decode_batch_size": 1,
"decode_top_cand": 5,
"decode_max_beam_per_length": 10,
"max_decoder_batch_tokens": 2048
},
"examples": ["I am a fast translation model."],
"expected_load_time": 17
},
"dat_base_translation_zhen": {
"class": GlatDecomposedLink,
"args":{
"model_name_or_path": "hfhub://thu-coai/dat_base_translation_zhen",
"decode_strategy": "beamsearch",
"decode_max_workers": 1,
"decode_threads_per_worker": 4,
"decode_dedup": True,
"decode_alpha": 1.1,
"decode_gamma": 0,
"decode_beam_size": 200,
"decode_batch_size": 1,
"decode_top_cand": 5,
"decode_max_beam_per_length": 10,
"max_decoder_batch_tokens": 2048
},
"examples": ["我是一个高速的机器翻译模型。"],
"expected_load_time": 17
},
"dat_uncased_squad": {
"class": GlatDecomposedLink,
"args":{
"model_name_or_path": "hfhub://thu-coai/dat_uncased_squad",
"decode_strategy": "beamsearch",
"decode_max_workers": 1,
"decode_threads_per_worker": 4,
"decode_gamma": 0,
"decode_beam_size": 200,
"decode_batch_size": 1,
"decode_top_cand": 5,
"decode_no_consecutive_repeated_tokens": 3,
"decode_no_repeated_tokens": 2,
"decode_max_beam_per_length": 10,
"max_decoder_batch_tokens": 2048
},
"examples": ["Two [SEP] Two additional teams of 40 attendants each will accompany the flame on its mainland China route."],
"expected_load_time": 20
},
"mass_uncased_squad": {
"class": TransformerMASSModel,
"args":{
"model_name_or_path": "hfhub://thu-coai/mass_uncased_squad"
},
"examples": ["Two [SEP] Two additional teams of 40 attendants each will accompany the flame on its mainland China route."],
"expected_load_time": 10
},
"transformer_base_translation_ende": {
"class": TransformerHubInterface,
"args":{
"model_name_or_path": "hfhub://thu-coai/transformer_base_translation_ende"
},
"examples": ["I am a fast translation model."],
"expected_load_time": 10
},
"transformer_base_translation_zhen": {
"class": TransformerHubInterface,
"args":{
"model_name_or_path": "hfhub://thu-coai/transformer_base_translation_zhen"
},
"examples": ["我是一个高速的机器翻译模型。"],
"expected_load_time": 10
}
}
compare_available_types = {
"Translation Zh-En: DA-Transformer v.s. Autoregressive Transformer": {
"models": ['dat_base_translation_zhen', 'transformer_base_translation_zhen'],
"examples": ["我是一个高速的机器翻译模型。", "非自回归模型可以用来加速自然语言生成。",
"使用本服务前,用户必须同意以下条款:该服务是仅供非商业用途的研究预览。它不保证输出文本的正确性。本服务可能会收集用户数据以供将来研究。"],
"placeholder": "请输入一个中文句子。 (The model will translate the input into English.)"
},
"Question Generation: DA-Transformer v.s. MASS": {
"models": ['dat_uncased_squad', "mass_uncased_squad"],
"examples": ["Two [SEP] Two additional teams of 40 attendants each will accompany the flame on its mainland China route.", "DA-Transformer [SEP] Directed Acyclic Transformer (DA-Transformer) is a non-autoregressive sequence-to-sequence model designed for parallel text generation."],
"placeholder": "Answer [SEP] Your Passage Here (the answer should be appearred in the passage)."
},
"Translation En-De: DA-Transformer v.s. Autoregressive Transformer": {
"models": ['dat_base_translation_ende', 'transformer_base_translation_ende'],
"examples": ["I am a fast translation model.", "Non-autoregressive models are designed for fast natural language generation.",
"By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only."],
"placeholder": "Any English sentence here. (The model will translate the input into German.)"
},
}
detail_available_types = {
"Translation Zh-En": {
"model": 'dat_base_translation_zhen',
"examples": compare_available_types['Translation Zh-En: DA-Transformer v.s. Autoregressive Transformer']["examples"],
"placeholder": compare_available_types['Translation Zh-En: DA-Transformer v.s. Autoregressive Transformer']["placeholder"]
},
"Question Generation": {
"model": 'dat_uncased_squad',
"examples": compare_available_types['Question Generation: DA-Transformer v.s. MASS']["examples"],
"placeholder": compare_available_types['Question Generation: DA-Transformer v.s. MASS']["placeholder"]
},
"Translation En-De": {
"model": 'dat_base_translation_ende',
"examples": compare_available_types['Translation En-De: DA-Transformer v.s. Autoregressive Transformer']["examples"],
"placeholder": compare_available_types['Translation En-De: DA-Transformer v.s. Autoregressive Transformer']["placeholder"],
},
}
models = {}
workers = None
def softplus(x, beta=1):
return math.log1p(math.exp(-abs(x * beta))) / beta + max(x, 0)
def get_fake_progress(min_progress, max_progress, used_time, expected_time):
percentage = max(1 - softplus(expected_time - used_time) / expected_time, 0)
return min_progress + (max_progress - min_progress) * percentage
def generate(model, model_input):
return {"output": model.translate(model_input)}
def generate_detail(model, model_input):
output, graph_info = model.generate_graph(model_input)
return {"output": output, "graph_info": graph_info}
def load_model(model_name):
assert model_name in available_models
model = available_models[model_name]['class'].from_pretrained(**available_models[model_name]['args'])
return model
def warmup_model(model, model_name):
model.translate(available_models[model_name]['examples'][0])
def submit(model_name, model_input, generate_fn, request: gr.Request, progress=gr.Progress()):
assert workers is not None, "No workers"
current_progress = 0
progress(0, desc="Downloading Checkpoints and Loading Models")
if model_name not in models:
load_start = time.time()
future = workers.submit(load_model, model_name)
while True:
try:
model = future.result(timeout=1)
break
except concurrent.futures._base.TimeoutError as _:
progress(get_fake_progress(min_progress=current_progress, max_progress=0.8, used_time=time.time() - load_start, expected_time=available_models[model_name]['expected_load_time']),
desc="Downloading Checkpoints and Loading Models")
logger.info(f"Model Loaded: {model_name} Load Time: {time.time() - load_start}")
current_progress = 0.8
models[model_name] = model
else:
model = models[model_name]
# warmup for better inference time
progress(current_progress, desc="Downloading Checkpoints and Loading Models")
if current_progress == 0.8:
target_progress = 0.9
else:
target_progress = 0.5
warmup_start = time.time()
future = workers.submit(warmup_model, model, model_name)
while True:
try:
result = future.result(timeout=1)
break
except concurrent.futures._base.TimeoutError as _:
progress(get_fake_progress(min_progress=current_progress, max_progress=target_progress, used_time=time.time() - warmup_start, expected_time=1),
desc="Downloading Checkpoints and Loading Models")
current_progress = target_progress
# running
progress(current_progress, desc="Running")
try:
generate_start = time.time()
future = workers.submit(generate_fn, model, model_input)
while True:
try:
result = future.result(timeout=1)
break
except concurrent.futures._base.TimeoutError as _:
progress(get_fake_progress(min_progress=current_progress, max_progress=1, used_time=time.time() - generate_start, expected_time=1),
desc="Running")
inference_time = time.time() - generate_start
result_abbrev = {}
for key, value in result.items():
log_str = str(value)
if len(log_str) > 1024:
log_str = log_str[:1024] + "..."
result_abbrev[key] = log_str
logger.info(f"Input: [{model_input}] Output: [{result_abbrev}] Inference Time: {inference_time}")
return result, inference_time
except RuntimeError as err:
return f"Runtime Error: {str(err)}", 0
def compare_init_state(model_selector):
model1 = compare_available_types[model_selector]['models'][0]
model2 = compare_available_types[model_selector]['models'][1]
state = [{"model_name": model1}, {"model_name": model2}]
return state
def compare_refresh(model_selector, samples):
model1 = compare_available_types[model_selector]['models'][0]
model2 = compare_available_types[model_selector]['models'][1]
model_output1 = gr.Textbox.update(visible=True, label=model1)
model_output2 = gr.Textbox.update(visible=True, label=model2)
model_input = gr.Textbox.update(value="", placeholder=compare_available_types[model_selector]['placeholder'])
samples.clear()
samples += [[x]for x in compare_available_types[model_selector]['examples']]
examples = gr.Dataset.update(samples=samples)
model_speed = gr.Plot.update(visible=False)
return model_input, model_output1, model_output2, examples, samples, model_speed
def compare_submit(model_input, idx, state, request: gr.Request, progress=gr.Progress()):
model_name = state[idx]['model_name']
model_output, inference_time = submit(model_name, model_input, generate, request, progress)
state[idx]['inference_time'] = inference_time
return model_output['output'], state
def compare_dataset_click(examples, samples):
return samples[examples][0]
def compare_show_plot(state):
x = [state[0]['model_name'], state[1]['model_name']]
y = [state[0]['inference_time'], state[1]['inference_time']]
fig = plt.figure(figsize=(12, 2.5))
ax = plt.subplot(111)
bars = ax.barh(x, y, 0.75)
ax.bar_label(bars, fmt="%.2f")
ax.set_yticks(np.arange(len(x)), labels=x)
ax.set_xlabel('Inference Time on CPU (s)')
plt.tight_layout()
# plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0, hspace=0)
return gr.Row.update(visible=True), gr.Plot.update(value=fig, visible=True)
def compare_clear():
return "", "", "", gr.Row.update(visible=False)
example_list = []
def build_tab_compare():
state = gr.State()
samples = gr.State(example_list)
available_type_names = list(compare_available_types.keys())
with gr.Row(elem_id="compare_model_selector_row"):
model_selector = gr.Dropdown(
choices=available_type_names,
value=available_type_names[0] if len(available_type_names) > 0 else "",
interactive=True,
show_label=False).style(container=False)
with gr.Row(elem_id="compare_model_input"):
model_input = gr.Textbox(lines=5, label="input")
# examples = gr.Dataset(examples=[], inputs=[model_input], elem_id="compare_examples")
examples = gr.Dataset(components=[model_input],
label="Examples",
type='index',
samples=example_list,
visible=True
)
# with gr.Row(elem_id="compare_examples"):
with gr.Row():
clear_btn = gr.Button(value="Clear")
submit_btn = gr.Button(value="Submit", variant="primary")
# with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
# temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Temperature",)
# max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Row(elem_id="compare_model_output"):
model_output1 = gr.Textbox(lines=5, label="output", visible=False)
model_output2 = gr.Textbox(lines=5, label="output", visible=False)
with gr.Row(elem_id="compare_model_speed", visible=False) as row:
with gr.Column():
model_speed = gr.Plot(value=None, label="Speed")
compare_hints = gr.Markdown("**Note the above time is measured on a free cloud server, which does not use GPU and is thus different from the setting in the papers.**")
model_selector.change(compare_refresh, [model_selector, samples], [model_input, model_output1, model_output2, examples, samples, model_speed])
clear_btn.click(compare_clear, None, [model_input, model_output1, model_output2, row])
submit_btn.click(compare_init_state, [model_selector], [state]).\
then(compare_submit, [model_input, gr.Number(value=0, visible=False, precision=0), state], [model_output1, state]).\
then(compare_submit, [model_input, gr.Number(value=1, visible=False, precision=0), state], [model_output2, state]).\
then(compare_show_plot, [state], [row, model_speed])
# submit_btn.click(compare_show_plot, [state], [model_speed])
examples.click(compare_dataset_click, [examples, samples], [model_input])
def load(fn):
fn(compare_refresh, [model_selector, samples], [model_input, model_output1, model_output2, examples, samples])
return load
def detail_init_state(model_selector):
model = detail_available_types[model_selector]['model']
state = {"model_name": model, "cnt": 0}
return state
def detail_refresh(model_selector, samples):
model = detail_available_types[model_selector]['model']
model_output = gr.Textbox.update(visible=True, label=model)
model_input = gr.Textbox.update(value="", placeholder=detail_available_types[model_selector]['placeholder'])
samples.clear()
samples += [[x]for x in detail_available_types[model_selector]['examples']]
examples = gr.Dataset.update(samples=samples)
model_speed = gr.Plot.update(visible=False)
return model_input, model_output, examples, samples, model_speed
def detail_submit(model_input, state, request: gr.Request, progress=gr.Progress()):
model_name = state['model_name']
model_output, inference_time = submit(model_name, model_input, generate_detail, request, progress)
state['inference_time'] = inference_time
state["graph_info"] = model_output['graph_info']
# html_code = open("graph.html").read()
# state["cnt"] += 1
# if state["cnt"] > 2:
# html_code += r"""<script type="text/javascript">addNode();</script>\n"""
# print(html_code)
return model_output['output'], state, gr.Row.update(visible=True), json.dumps(state)
def detail_dataset_click(examples, samples):
return samples[examples][0]
def detail_clear():
return "", "", gr.Row.update(visible=False)
def build_tab_detail():
state = gr.State()
samples = gr.State(example_list)
available_type_names = list(detail_available_types.keys())
with gr.Row(elem_id="detail_model_selector_row"):
model_selector = gr.Dropdown(
choices=available_type_names,
value=available_type_names[0] if len(available_type_names) > 0 else "",
interactive=True,
show_label=False).style(container=False)
with gr.Row(elem_id="detail_model_input"):
model_input = gr.Textbox(lines=5, label="input")
# examples = gr.Dataset(examples=[], inputs=[model_input], elem_id="compare_examples")
examples = gr.Dataset(components=[model_input],
label="Examples",
type='index',
samples=example_list,
visible=True
)
# with gr.Row(elem_id="compare_examples"):
with gr.Row():
clear_btn = gr.Button(value="Clear")
submit_btn = gr.Button(value="Submit", variant="primary")
# with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
# temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Temperature",)
# max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Row(elem_id="detail_model_output"):
model_output = gr.Textbox(lines=5, label="output", visible=False)
with gr.Row(visible=False) as dag_graph:
with gr.Column(scale=1.8):
html = gr.HTML(open("graph.html").read())
with gr.Column(scale=1):
minimum_node_pass_prob = gr.Slider(0, 1, value=0.2, label="Show nodes with passing probability greater than", info="Nodes that predict the output sequence are always visible")
minimum_edge_prob = gr.Slider(0, 1, value=0.1, label="Show edges with transition probability greater than")
max_out_edge_num = gr.Slider(1, 10, value=5, step=1, label="Show top-k outgoing edges with k")
max_out_edge_prob = gr.Slider(0, 1, value=0.9, label="Show top-p outgoing edges with p")
force_in_edge = gr.Checkbox(True, label="Show at least one incoming edge for each node")
show_node_detail = gr.Checkbox(False, label="Show verbose node information")
show_edge_label = gr.Checkbox(False, label="Show transition probability")
network_refresh = gr.Button(value="Reinitialize DAG Visualization")
graph_parameters = [minimum_node_pass_prob, minimum_edge_prob, max_out_edge_num, max_out_edge_prob, force_in_edge, show_node_detail, show_edge_label]
js_state = gr.Textbox(visible=False)
model_selector.change(detail_refresh, [model_selector, samples], [model_input, model_output, examples, samples])
clear_btn.click(detail_clear, None, [model_input, model_output, dag_graph])
graph_create_js = """(state_str, minimum_node_pass_prob, minimum_edge_prob, max_out_edge_num, max_out_edge_prob, force_in_edge, show_node_detail, show_edge_label) => {
var state = JSON.parse(state_str);
var options = {
minimum_node_pass_prob: minimum_node_pass_prob,
minimum_edge_prob: minimum_edge_prob,
max_out_edge_num: max_out_edge_num,
max_out_edge_prob: max_out_edge_prob,
force_in_edge: force_in_edge,
show_node_detail: show_node_detail,
show_edge_label: show_edge_label,
}
startNetwork(state.graph_info, options);
}"""
graph_update_js = """(minimum_node_pass_prob, minimum_edge_prob, max_out_edge_num, max_out_edge_prob, force_in_edge, show_node_detail, show_edge_label) => {
var options = {
minimum_node_pass_prob: minimum_node_pass_prob,
minimum_edge_prob: minimum_edge_prob,
max_out_edge_num: max_out_edge_num,
max_out_edge_prob: max_out_edge_prob,
force_in_edge: force_in_edge,
show_node_detail: show_node_detail,
show_edge_label: show_edge_label,
}
updateNetwork(options);
}"""
submit_btn.click(detail_init_state, [model_selector], [state]).\
then(detail_submit, [model_input, state], [model_output, state, dag_graph, js_state]).\
then(None, [js_state] + graph_parameters, None, _js=graph_create_js)
network_refresh.click(None, [js_state] + graph_parameters, None, _js=graph_create_js)
minimum_node_pass_prob.change(None, graph_parameters, None, _js=graph_update_js)
minimum_edge_prob.change(None, graph_parameters, None, _js=graph_update_js)
max_out_edge_num.change(None, graph_parameters, None, _js=graph_update_js)
max_out_edge_prob.change(None, graph_parameters, None, _js=graph_update_js)
force_in_edge.select(None, graph_parameters, None, _js=graph_update_js)
show_node_detail.select(None, graph_parameters, None, _js=graph_update_js)
show_edge_label.select(None, graph_parameters, None, _js=graph_update_js)
examples.click(detail_dataset_click, [examples, samples], [model_input])
def load(fn):
fn(detail_refresh, [model_selector, samples], [model_input, model_output, examples, samples])
return load
def build_demo():
with gr.Blocks(title="DA-Transformer Demo", theme=gr.themes.Base(), css=css) as demo:
gr.Markdown(notice_markdown)
with gr.Tab("Speed Comparison") as compare_tab:
compare_load = build_tab_compare()
compare_load(compare_tab.select)
with gr.Tab("DA-Transformer Inspection") as detail_tab:
detail_load = build_tab_detail()
detail_load(detail_tab.select)
gr.Markdown(learn_more_markdown)
compare_load(demo.load)
demo.load(None,None,None,_js=open("global.js").read())
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--concurrency-count", type=int, default=1)
parser.add_argument("--share", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
workers = concurrent.futures.ThreadPoolExecutor(max_workers=1)
demo = build_demo()
demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10,
api_open=False).launch(server_name=args.host, server_port=args.port,
share=args.share, max_threads=5)
|