File size: 25,113 Bytes
976cf27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import argparse
from collections import defaultdict
import datetime
import json
import os, sys
import time
import concurrent

import math
import gradio as gr
import requests
import logging
import numpy as np
import matplotlib.pyplot as plt
import fairseq


fairseq_path = os.path.dirname(os.path.dirname(fairseq.__file__))

sys.path.insert(1, f"{fairseq_path}")
from fs_plugins.models.glat_decomposed_with_link import GlatDecomposedLink

sys.path.insert(1, f"{fairseq_path}/examples")
from mass.s2s_model import TransformerMASSModel
from transformer.hub_interface import TransformerHubInterface

logger = logging.getLogger(__name__)

notice_markdown = ("""
# Directed Acyclic Transformer: A Non-Autoregressive Sequence-to-Sequence Model designed for Parallel Text Generation.
- **Fast Generation**: DA-Transformer offers faster inference compared to autoregressive Transformers (with fairseq implementation), with a reduction in latency by 7~14x and an increase in throughput by ~20x.
- **High Quality**: DA-Transformer performs competitively with autoregressive Transformers, even with pre-trained models like BART, in a variety of text generation tasks.
- **Easy Training**: DA-Transformer can be trained end-to-end without requiring knowledge distillation, making it simple and straightforward to train.

## Resources

- [[Github]](https://github.com/thu-coai/DA-Transformer)
- Papers: [[Machine Translation]](https://proceedings.mlr.press/v162/huang22m/huang22m.pdf) [[Pre-training]](https://arxiv.org/pdf/2304.11791.pdf)

## Terms of use
By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It does not gaurantee the correctness of the output text. The service may collect user data for future research.

## This demo contains models
- [En-De Translation]()
- [Zh-En Translation]()
- [Question Generation]()
""")

learn_more_markdown = ("""
""")


css = """
pre {
    white-space: pre-wrap;       /* Since CSS 2.1 */
    white-space: -moz-pre-wrap;  /* Mozilla, since 1999 */
    white-space: -pre-wrap;      /* Opera 4-6 */
    white-space: -o-pre-wrap;    /* Opera 7 */
    word-wrap: break-word;       /* Internet Explorer 5.5+ */
}
"""

available_models = {
    "dat_base_translation_ende": {
        "class": GlatDecomposedLink,
        "args":{
            "model_name_or_path": "hfhub://thu-coai/dat_base_translation_ende",
            "decode_strategy": "beamsearch",
            "decode_max_workers": 1,
            "decode_threads_per_worker": 4,
            "decode_dedup": True,
            "decode_alpha": 1.1,
            "decode_gamma": 0,
            "decode_beam_size": 200,
            "decode_batch_size": 1,
            "decode_top_cand": 5,
            "decode_max_beam_per_length": 10,
            "max_decoder_batch_tokens": 2048
        },
        "examples": ["I am a fast translation model."],
        "expected_load_time": 17
    },
    "dat_base_translation_zhen": {
        "class": GlatDecomposedLink,
        "args":{
            "model_name_or_path": "hfhub://thu-coai/dat_base_translation_zhen",
            "decode_strategy": "beamsearch",
            "decode_max_workers": 1,
            "decode_threads_per_worker": 4,
            "decode_dedup": True,
            "decode_alpha": 1.1,
            "decode_gamma": 0,
            "decode_beam_size": 200,
            "decode_batch_size": 1,
            "decode_top_cand": 5,
            "decode_max_beam_per_length": 10,
            "max_decoder_batch_tokens": 2048
        },
        "examples": ["我是一个高速的机器翻译模型。"],
        "expected_load_time": 17
    },
    "dat_uncased_squad": {
        "class": GlatDecomposedLink,
        "args":{
            "model_name_or_path": "hfhub://thu-coai/dat_uncased_squad",
            "decode_strategy": "beamsearch",
            "decode_max_workers": 1,
            "decode_threads_per_worker": 4,
            "decode_gamma": 0,
            "decode_beam_size": 200,
            "decode_batch_size": 1,
            "decode_top_cand": 5,
            "decode_no_consecutive_repeated_tokens": 3,
            "decode_no_repeated_tokens": 2,
            "decode_max_beam_per_length": 10,
            "max_decoder_batch_tokens": 2048
        },
        "examples": ["Two [SEP] Two additional teams of 40 attendants each will accompany the flame on its mainland China route."],
        "expected_load_time": 20
    },
    "mass_uncased_squad": {
        "class": TransformerMASSModel,
        "args":{
            "model_name_or_path": "hfhub://thu-coai/mass_uncased_squad"
        },
        "examples": ["Two [SEP] Two additional teams of 40 attendants each will accompany the flame on its mainland China route."],
        "expected_load_time": 10
    },
    "transformer_base_translation_ende": {
        "class": TransformerHubInterface,
        "args":{
            "model_name_or_path": "hfhub://thu-coai/transformer_base_translation_ende"
        },
        "examples": ["I am a fast translation model."],
        "expected_load_time": 10
    },
    "transformer_base_translation_zhen": {
        "class": TransformerHubInterface,
        "args":{
            "model_name_or_path": "hfhub://thu-coai/transformer_base_translation_zhen"
        },
        "examples": ["我是一个高速的机器翻译模型。"],
        "expected_load_time": 10
    }
}

compare_available_types = {
    "Translation Zh-En: DA-Transformer v.s. Autoregressive Transformer": {
        "models": ['dat_base_translation_zhen', 'transformer_base_translation_zhen'],
        "examples": ["我是一个高速的机器翻译模型。", "非自回归模型可以用来加速自然语言生成。",
                     "使用本服务前,用户必须同意以下条款:该服务是仅供非商业用途的研究预览。它不保证输出文本的正确性。本服务可能会收集用户数据以供将来研究。"],
        "placeholder": "请输入一个中文句子。 (The model will translate the input into English.)"
    },
    "Question Generation: DA-Transformer v.s. MASS": {
        "models": ['dat_uncased_squad', "mass_uncased_squad"],
        "examples": ["Two [SEP] Two additional teams of 40 attendants each will accompany the flame on its mainland China route.", "DA-Transformer [SEP] Directed Acyclic Transformer (DA-Transformer) is a non-autoregressive sequence-to-sequence model designed for parallel text generation."],
        "placeholder": "Answer [SEP] Your Passage Here (the answer should be appearred in the passage)."
    },
    "Translation En-De: DA-Transformer v.s. Autoregressive Transformer": {
        "models": ['dat_base_translation_ende', 'transformer_base_translation_ende'],
        "examples": ["I am a fast translation model.", "Non-autoregressive models are designed for fast natural language generation.",
                     "By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only."],
        "placeholder": "Any English sentence here. (The model will translate the input into German.)"
    },
}

detail_available_types = {
    "Translation Zh-En": {
        "model": 'dat_base_translation_zhen',
        "examples": compare_available_types['Translation Zh-En: DA-Transformer v.s. Autoregressive Transformer']["examples"],
        "placeholder": compare_available_types['Translation Zh-En: DA-Transformer v.s. Autoregressive Transformer']["placeholder"]
    },
    "Question Generation": {
        "model": 'dat_uncased_squad',
        "examples": compare_available_types['Question Generation: DA-Transformer v.s. MASS']["examples"],
        "placeholder": compare_available_types['Question Generation: DA-Transformer v.s. MASS']["placeholder"]
    },
    "Translation En-De": {
        "model": 'dat_base_translation_ende',
        "examples": compare_available_types['Translation En-De: DA-Transformer v.s. Autoregressive Transformer']["examples"],
        "placeholder": compare_available_types['Translation En-De: DA-Transformer v.s. Autoregressive Transformer']["placeholder"],
    },
}

models = {}
workers = None

def softplus(x, beta=1):
    return math.log1p(math.exp(-abs(x * beta))) / beta + max(x, 0)

def get_fake_progress(min_progress, max_progress, used_time, expected_time):
    percentage = max(1 - softplus(expected_time - used_time) / expected_time, 0)
    return min_progress + (max_progress - min_progress) * percentage

def generate(model, model_input):
    return {"output": model.translate(model_input)}

def generate_detail(model, model_input):
    output, graph_info = model.generate_graph(model_input)
    return {"output": output, "graph_info": graph_info}

def load_model(model_name):
    assert model_name in available_models
    model = available_models[model_name]['class'].from_pretrained(**available_models[model_name]['args'])
    return model

def warmup_model(model, model_name):
    model.translate(available_models[model_name]['examples'][0])

def submit(model_name, model_input, generate_fn, request: gr.Request, progress=gr.Progress()):
    assert workers is not None, "No workers"
    current_progress = 0

    progress(0, desc="Downloading Checkpoints and Loading Models")
    if model_name not in models:
        load_start = time.time()
        future = workers.submit(load_model, model_name)
        while True:
            try:
                model = future.result(timeout=1)
                break
            except concurrent.futures._base.TimeoutError as _:
                progress(get_fake_progress(min_progress=current_progress, max_progress=0.8, used_time=time.time() - load_start, expected_time=available_models[model_name]['expected_load_time']),
                        desc="Downloading Checkpoints and Loading Models")
        logger.info(f"Model Loaded: {model_name} Load Time: {time.time() - load_start}")
        current_progress = 0.8
        models[model_name] = model
    else:
        model = models[model_name]

    # warmup for better inference time
    progress(current_progress, desc="Downloading Checkpoints and Loading Models")
    if current_progress == 0.8:
        target_progress = 0.9
    else:
        target_progress = 0.5
    warmup_start = time.time()
    future = workers.submit(warmup_model, model, model_name)
    while True:
        try:
            result = future.result(timeout=1)
            break
        except concurrent.futures._base.TimeoutError as _:
            progress(get_fake_progress(min_progress=current_progress, max_progress=target_progress, used_time=time.time() - warmup_start, expected_time=1),
                        desc="Downloading Checkpoints and Loading Models")
    current_progress = target_progress

    # running
    progress(current_progress, desc="Running")
    try:
        generate_start = time.time()
        future = workers.submit(generate_fn, model, model_input)
        while True:
            try:
                result = future.result(timeout=1)
                break
            except concurrent.futures._base.TimeoutError as _:
                progress(get_fake_progress(min_progress=current_progress, max_progress=1, used_time=time.time() - generate_start, expected_time=1),
                            desc="Running")
        inference_time = time.time() - generate_start

        result_abbrev = {}
        for key, value in result.items():
            log_str = str(value)
            if len(log_str) > 1024:
                log_str = log_str[:1024] + "..."
            result_abbrev[key] = log_str
        logger.info(f"Input: [{model_input}] Output: [{result_abbrev}] Inference Time: {inference_time}")
        return result, inference_time
    except RuntimeError as err:
        return f"Runtime Error: {str(err)}", 0


def compare_init_state(model_selector):
    model1 = compare_available_types[model_selector]['models'][0]
    model2 = compare_available_types[model_selector]['models'][1]
    state = [{"model_name": model1}, {"model_name": model2}]
    return state

def compare_refresh(model_selector, samples):
    model1 = compare_available_types[model_selector]['models'][0]
    model2 = compare_available_types[model_selector]['models'][1]
    model_output1 = gr.Textbox.update(visible=True, label=model1)
    model_output2 = gr.Textbox.update(visible=True, label=model2)
    model_input = gr.Textbox.update(value="", placeholder=compare_available_types[model_selector]['placeholder'])
    samples.clear()
    samples += [[x]for x in compare_available_types[model_selector]['examples']]
    examples = gr.Dataset.update(samples=samples)
    model_speed = gr.Plot.update(visible=False)
    return model_input, model_output1, model_output2, examples, samples, model_speed

def compare_submit(model_input, idx, state, request: gr.Request, progress=gr.Progress()):
    model_name = state[idx]['model_name']
    model_output, inference_time = submit(model_name, model_input, generate, request, progress)
    state[idx]['inference_time'] = inference_time
    return model_output['output'], state

def compare_dataset_click(examples, samples):
    return samples[examples][0]

def compare_show_plot(state):
    x = [state[0]['model_name'], state[1]['model_name']]
    y = [state[0]['inference_time'], state[1]['inference_time']]

    fig = plt.figure(figsize=(12, 2.5))
    ax = plt.subplot(111)
    bars = ax.barh(x, y, 0.75)
    ax.bar_label(bars, fmt="%.2f")
    ax.set_yticks(np.arange(len(x)), labels=x)
    ax.set_xlabel('Inference Time on CPU (s)')
    plt.tight_layout()
    # plt.subplots_adjust(left=0.1, bottom=0.1, right=0.9, top=0.9, wspace=0, hspace=0)

    return gr.Row.update(visible=True), gr.Plot.update(value=fig, visible=True)

def compare_clear():
    return "", "", "", gr.Row.update(visible=False)

example_list = []

def build_tab_compare():
    state = gr.State()
    samples = gr.State(example_list)

    available_type_names = list(compare_available_types.keys())
    with gr.Row(elem_id="compare_model_selector_row"):
        model_selector = gr.Dropdown(
            choices=available_type_names,
            value=available_type_names[0] if len(available_type_names) > 0 else "",
            interactive=True,
            show_label=False).style(container=False)

    with gr.Row(elem_id="compare_model_input"):
        model_input = gr.Textbox(lines=5, label="input")
        # examples = gr.Dataset(examples=[], inputs=[model_input], elem_id="compare_examples")
    examples = gr.Dataset(components=[model_input],
        label="Examples",
        type='index',
        samples=example_list,
        visible=True
    )

    # with gr.Row(elem_id="compare_examples"):

    with gr.Row():
        clear_btn = gr.Button(value="Clear")
        submit_btn = gr.Button(value="Submit", variant="primary")

    # with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
    #     temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Temperature",)
    #     max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)

    with gr.Row(elem_id="compare_model_output"):
        model_output1 = gr.Textbox(lines=5, label="output", visible=False)
        model_output2 = gr.Textbox(lines=5, label="output", visible=False)

    with gr.Row(elem_id="compare_model_speed", visible=False) as row:
        with gr.Column():
            model_speed = gr.Plot(value=None, label="Speed")
            compare_hints = gr.Markdown("**Note the above time is measured on a free cloud server, which does not use GPU and is thus different from the setting in the papers.**")

    model_selector.change(compare_refresh, [model_selector, samples], [model_input, model_output1, model_output2, examples, samples, model_speed])

    clear_btn.click(compare_clear, None, [model_input, model_output1, model_output2, row])

    submit_btn.click(compare_init_state, [model_selector], [state]).\
                then(compare_submit, [model_input, gr.Number(value=0, visible=False, precision=0), state], [model_output1, state]).\
                then(compare_submit, [model_input, gr.Number(value=1, visible=False, precision=0), state], [model_output2, state]).\
                then(compare_show_plot, [state], [row, model_speed])
    # submit_btn.click(compare_show_plot, [state], [model_speed])

    examples.click(compare_dataset_click, [examples, samples], [model_input])

    def load(fn):
        fn(compare_refresh, [model_selector, samples], [model_input, model_output1, model_output2, examples, samples])

    return load

def detail_init_state(model_selector):
    model = detail_available_types[model_selector]['model']
    state = {"model_name": model, "cnt": 0}
    return state

def detail_refresh(model_selector, samples):
    model = detail_available_types[model_selector]['model']
    model_output = gr.Textbox.update(visible=True, label=model)
    model_input = gr.Textbox.update(value="", placeholder=detail_available_types[model_selector]['placeholder'])
    samples.clear()
    samples += [[x]for x in detail_available_types[model_selector]['examples']]
    examples = gr.Dataset.update(samples=samples)
    model_speed = gr.Plot.update(visible=False)
    return model_input, model_output, examples, samples, model_speed

def detail_submit(model_input, state, request: gr.Request, progress=gr.Progress()):
    model_name = state['model_name']
    model_output, inference_time = submit(model_name, model_input, generate_detail, request, progress)
    state['inference_time'] = inference_time
    state["graph_info"] = model_output['graph_info']
    # html_code = open("graph.html").read()

    # state["cnt"] += 1
    # if state["cnt"] > 2:
    #     html_code += r"""<script type="text/javascript">addNode();</script>\n"""
    # print(html_code)
    
    return model_output['output'], state, gr.Row.update(visible=True), json.dumps(state)

def detail_dataset_click(examples, samples):
    return samples[examples][0]

def detail_clear():
    return "", "", gr.Row.update(visible=False)

def build_tab_detail():

    state = gr.State()
    samples = gr.State(example_list)

    available_type_names = list(detail_available_types.keys())
    with gr.Row(elem_id="detail_model_selector_row"):
        model_selector = gr.Dropdown(
            choices=available_type_names,
            value=available_type_names[0] if len(available_type_names) > 0 else "",
            interactive=True,
            show_label=False).style(container=False)

    with gr.Row(elem_id="detail_model_input"):
        model_input = gr.Textbox(lines=5, label="input")
        # examples = gr.Dataset(examples=[], inputs=[model_input], elem_id="compare_examples")
    examples = gr.Dataset(components=[model_input],
        label="Examples",
        type='index',
        samples=example_list,
        visible=True
    )

    # with gr.Row(elem_id="compare_examples"):

    with gr.Row():
        clear_btn = gr.Button(value="Clear")
        submit_btn = gr.Button(value="Submit", variant="primary")

    # with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
    #     temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Temperature",)
    #     max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)

    with gr.Row(elem_id="detail_model_output"):
        model_output = gr.Textbox(lines=5, label="output", visible=False)

    with gr.Row(visible=False) as dag_graph:
        with gr.Column(scale=1.8):
            html = gr.HTML(open("graph.html").read())
        with gr.Column(scale=1):
            minimum_node_pass_prob = gr.Slider(0, 1, value=0.2, label="Show nodes with passing probability greater than", info="Nodes that predict the output sequence are always visible")
            minimum_edge_prob = gr.Slider(0, 1, value=0.1, label="Show edges with transition probability greater than")
            max_out_edge_num = gr.Slider(1, 10, value=5, step=1, label="Show top-k outgoing edges with k")
            max_out_edge_prob = gr.Slider(0, 1, value=0.9, label="Show top-p outgoing edges with p")
            force_in_edge = gr.Checkbox(True, label="Show at least one incoming edge for each node")
            show_node_detail = gr.Checkbox(False, label="Show verbose node information")
            show_edge_label = gr.Checkbox(False, label="Show transition probability")
            network_refresh = gr.Button(value="Reinitialize DAG Visualization")
        graph_parameters = [minimum_node_pass_prob, minimum_edge_prob, max_out_edge_num, max_out_edge_prob, force_in_edge, show_node_detail, show_edge_label]

    js_state = gr.Textbox(visible=False)

    model_selector.change(detail_refresh, [model_selector, samples], [model_input, model_output, examples, samples])

    clear_btn.click(detail_clear, None, [model_input, model_output, dag_graph])

    graph_create_js = """(state_str, minimum_node_pass_prob, minimum_edge_prob, max_out_edge_num, max_out_edge_prob, force_in_edge, show_node_detail, show_edge_label) => {
                            var state = JSON.parse(state_str);
                            var options = {
                                minimum_node_pass_prob: minimum_node_pass_prob,
                                minimum_edge_prob: minimum_edge_prob,
                                max_out_edge_num: max_out_edge_num,
                                max_out_edge_prob: max_out_edge_prob,
                                force_in_edge: force_in_edge,
                                show_node_detail: show_node_detail,
                                show_edge_label: show_edge_label,
                            }
                            startNetwork(state.graph_info, options);
                    }"""
    graph_update_js = """(minimum_node_pass_prob, minimum_edge_prob, max_out_edge_num, max_out_edge_prob, force_in_edge, show_node_detail, show_edge_label) => {
                            var options = {
                                minimum_node_pass_prob: minimum_node_pass_prob,
                                minimum_edge_prob: minimum_edge_prob,
                                max_out_edge_num: max_out_edge_num,
                                max_out_edge_prob: max_out_edge_prob,
                                force_in_edge: force_in_edge,
                                show_node_detail: show_node_detail,
                                show_edge_label: show_edge_label,
                            }
                            updateNetwork(options);
                    }"""
    submit_btn.click(detail_init_state, [model_selector], [state]).\
                then(detail_submit, [model_input, state], [model_output, state, dag_graph, js_state]).\
                then(None, [js_state] + graph_parameters, None, _js=graph_create_js)
    network_refresh.click(None, [js_state] + graph_parameters, None, _js=graph_create_js)
    minimum_node_pass_prob.change(None, graph_parameters, None, _js=graph_update_js)
    minimum_edge_prob.change(None, graph_parameters, None, _js=graph_update_js)
    max_out_edge_num.change(None, graph_parameters, None, _js=graph_update_js)
    max_out_edge_prob.change(None, graph_parameters, None, _js=graph_update_js)
    force_in_edge.select(None, graph_parameters, None, _js=graph_update_js)
    show_node_detail.select(None, graph_parameters, None, _js=graph_update_js)
    show_edge_label.select(None, graph_parameters, None, _js=graph_update_js)

    examples.click(detail_dataset_click, [examples, samples], [model_input])

    def load(fn):
        fn(detail_refresh, [model_selector, samples], [model_input, model_output, examples, samples])

    return load

def build_demo():
    with gr.Blocks(title="DA-Transformer Demo", theme=gr.themes.Base(), css=css) as demo:
        gr.Markdown(notice_markdown)

        with gr.Tab("Speed Comparison") as compare_tab:
            compare_load = build_tab_compare()
        compare_load(compare_tab.select)
        with gr.Tab("DA-Transformer Inspection") as detail_tab:
            detail_load = build_tab_detail()
        detail_load(detail_tab.select)

        gr.Markdown(learn_more_markdown)

        compare_load(demo.load)

        demo.load(None,None,None,_js=open("global.js").read())
    return demo

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--host", type=str, default="0.0.0.0")
    parser.add_argument("--port", type=int)
    parser.add_argument("--concurrency-count", type=int, default=1)
    parser.add_argument("--share", action="store_true")
    args = parser.parse_args()
    logger.info(f"args: {args}")

    workers = concurrent.futures.ThreadPoolExecutor(max_workers=1)
    demo = build_demo()
    demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10,
               api_open=False).launch(server_name=args.host, server_port=args.port,
                                      share=args.share, max_threads=5)