Add application file
Browse files- .gitignore +31 -0
- app.py +29 -0
- images/dog.jpeg +0 -0
- requirements.txt +3 -0
- zhclip/__init__.py +6 -0
- zhclip/configuration_zhclip.py +95 -0
- zhclip/modeling_zhclip.py +239 -0
- zhclip/processing_zhclip.py +135 -0
.gitignore
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
**/__pycache__
|
4 |
+
*.py[cod]
|
5 |
+
*$py.class
|
6 |
+
|
7 |
+
# C extensions
|
8 |
+
*.so
|
9 |
+
|
10 |
+
# Distribution / packaging
|
11 |
+
.Python
|
12 |
+
build/
|
13 |
+
develop-eggs/
|
14 |
+
dist/
|
15 |
+
downloads/
|
16 |
+
eggs/
|
17 |
+
.eggs/
|
18 |
+
lib/
|
19 |
+
lib64/
|
20 |
+
parts/
|
21 |
+
sdist/
|
22 |
+
var/
|
23 |
+
wheels/
|
24 |
+
share/python-wheels/
|
25 |
+
*.egg-info/
|
26 |
+
.installed.cfg
|
27 |
+
*.egg
|
28 |
+
MANIFEST
|
29 |
+
|
30 |
+
# ours
|
31 |
+
tools/
|
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from typing import List
|
3 |
+
from PIL import Image
|
4 |
+
from zhclip import ZhCLIPProcessor, ZhCLIPModel # From https://www.github.com/thu-ml/zh-clip
|
5 |
+
|
6 |
+
version = 'thu-ml/zh-clip-vit-roberta-large-patch14'
|
7 |
+
model = ZhCLIPModel.from_pretrained(version)
|
8 |
+
processor = ZhCLIPProcessor.from_pretrained(version)
|
9 |
+
|
10 |
+
def inference(image, texts: List[str]):
|
11 |
+
texts = [x[0] for x in texts]
|
12 |
+
inputs = processor(text=texts, images=image, return_tensors="pt", padding=True)
|
13 |
+
outputs = model(**inputs)
|
14 |
+
image_features = outputs.image_features
|
15 |
+
text_features = outputs.text_features
|
16 |
+
text_probs = (image_features @ text_features.T).softmax(dim=-1)[0].detach().cpu().numpy()
|
17 |
+
return {i: float(text_probs[i]) for i in range(len(text_probs))}
|
18 |
+
|
19 |
+
title = "ZH-CLIP zero-shot classification"
|
20 |
+
description = "Chinese Clip Model (ZH-CLIP) zero-shot classification"
|
21 |
+
article="<p style='text-align: center'><a href='https://www.github.com/thu-ml/zh-clip' target='_blank'>github: zh-clip</a> <a href='https://huggingface.co/thu-ml/zh-clip-vit-roberta-large-patch14' target='_blank'>huggingface model: thu-ml/zh-clip-vit-roberta-large-patch14</a></p>"
|
22 |
+
examples = [['./images/dog.jpeg', [['一只狗'], ['一只猫']]]]
|
23 |
+
interpretation='default'
|
24 |
+
enable_queue=True
|
25 |
+
|
26 |
+
iface = gr.Interface(fn=inference, inputs=["image", "list"], outputs="label",
|
27 |
+
title=title, description=description, article=article, examples=examples,
|
28 |
+
enable_queue=enable_queue)
|
29 |
+
iface.launch(server_name='0.0.0.0')
|
images/dog.jpeg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers==4.26.1
|
3 |
+
multilingual_clip
|
zhclip/__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .modeling_zhclip import (
|
2 |
+
ZhCLIPModel,
|
3 |
+
)
|
4 |
+
|
5 |
+
from .configuration_zhclip import ZhCLIPConfig
|
6 |
+
from .processing_zhclip import ZhCLIPProcessor
|
zhclip/configuration_zhclip.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" ZhClip model configuration"""
|
16 |
+
|
17 |
+
import copy
|
18 |
+
|
19 |
+
from transformers.configuration_utils import PretrainedConfig
|
20 |
+
from transformers.utils import logging
|
21 |
+
from transformers.models.auto.configuration_auto import AutoConfig
|
22 |
+
from transformers.models.clip.configuration_clip import CLIPVisionConfig
|
23 |
+
from typing import Union, Dict
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
class ZhCLIPConfig(PretrainedConfig):
|
28 |
+
|
29 |
+
model_type = "zhclip"
|
30 |
+
is_composition = True
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
text_config: Union[PretrainedConfig, Dict],
|
35 |
+
vision_config: Union[PretrainedConfig, Dict],
|
36 |
+
num_token_types=2,
|
37 |
+
hidden_size=768,
|
38 |
+
num_hidden_layers=6,
|
39 |
+
num_attention_heads=12,
|
40 |
+
intermediate_size=3072,
|
41 |
+
hidden_act="gelu",
|
42 |
+
hidden_dropout_prob=0.1,
|
43 |
+
attention_probs_dropout_prob=0.1,
|
44 |
+
initializer_range=0.02,
|
45 |
+
layer_norm_eps=1e-12,
|
46 |
+
classifier_dropout=None,
|
47 |
+
**kwargs):
|
48 |
+
super().__init__(**kwargs)
|
49 |
+
|
50 |
+
if not isinstance(text_config, PretrainedConfig):
|
51 |
+
text_model_type = text_config.pop('model_type')
|
52 |
+
text_config = AutoConfig.for_model(text_model_type, **text_config)
|
53 |
+
self.text_config = text_config
|
54 |
+
|
55 |
+
if not isinstance(vision_config, PretrainedConfig):
|
56 |
+
vision_model_type = vision_config.pop('model_type')
|
57 |
+
if vision_model_type == "clip":
|
58 |
+
vision_config = AutoConfig.for_model(vision_model_type, **vision_config).vision_config
|
59 |
+
elif vision_model_type == "clip_vision_model":
|
60 |
+
vision_config = CLIPVisionConfig(**vision_config)
|
61 |
+
else:
|
62 |
+
vision_config = AutoConfig.for_model(vision_model_type, **vision_config)
|
63 |
+
self.vision_config = vision_config
|
64 |
+
else:
|
65 |
+
vision_model_type = vision_config.model_type
|
66 |
+
if vision_model_type== "clip":
|
67 |
+
vision_config = vision_config.vision_config
|
68 |
+
self.vision_config = vision_config
|
69 |
+
|
70 |
+
|
71 |
+
# co-attention
|
72 |
+
self.num_token_types=num_token_types
|
73 |
+
self.hidden_size=hidden_size
|
74 |
+
self.num_hidden_layers=num_hidden_layers
|
75 |
+
self.num_attention_heads=num_attention_heads
|
76 |
+
self.intermediate_size=intermediate_size
|
77 |
+
self.hidden_act=hidden_act
|
78 |
+
self.hidden_dropout_prob=hidden_dropout_prob
|
79 |
+
self.attention_probs_dropout_prob=attention_probs_dropout_prob
|
80 |
+
self.initializer_range=initializer_range
|
81 |
+
self.layer_norm_eps=layer_norm_eps
|
82 |
+
self.classifier_dropout=classifier_dropout
|
83 |
+
|
84 |
+
|
85 |
+
def to_dict(self):
|
86 |
+
"""
|
87 |
+
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
|
88 |
+
Returns:
|
89 |
+
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
|
90 |
+
"""
|
91 |
+
output = copy.deepcopy(self.__dict__)
|
92 |
+
output["vision_config"] = self.vision_config.to_dict()
|
93 |
+
output["text_config"] = self.text_config.to_dict()
|
94 |
+
output["model_type"] = self.__class__.model_type
|
95 |
+
return output
|
zhclip/modeling_zhclip.py
ADDED
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch ZH-CLIP model."""
|
16 |
+
|
17 |
+
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
from torch import TensorType
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch import nn
|
23 |
+
|
24 |
+
|
25 |
+
from transformers.modeling_utils import PreTrainedModel
|
26 |
+
from transformers.utils import logging, ModelOutput
|
27 |
+
from transformers.models.auto.modeling_auto import AutoModel
|
28 |
+
|
29 |
+
from transformers.models.clip.modeling_clip import CLIPVisionConfig, CLIPVisionModel
|
30 |
+
from .configuration_zhclip import ZhCLIPConfig
|
31 |
+
from dataclasses import dataclass
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
_CONFIG_FOR_DOC = "ZhCLIPConfig"
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class ZhCLIPModelOutput(ModelOutput):
|
38 |
+
|
39 |
+
text_features: torch.FloatTensor = None
|
40 |
+
image_features: torch.FloatTensor = None
|
41 |
+
|
42 |
+
|
43 |
+
class MeanPooler(nn.Module):
|
44 |
+
"""Mean pooling"""
|
45 |
+
|
46 |
+
def forward(self, last_hidden_state: TensorType, attention_mask: TensorType):
|
47 |
+
masked_output = last_hidden_state * attention_mask.unsqueeze(-1)
|
48 |
+
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
49 |
+
|
50 |
+
|
51 |
+
class ZhCLIPPreTrainedModel(PreTrainedModel):
|
52 |
+
"""
|
53 |
+
An abstract class to handle weights initialization.
|
54 |
+
"""
|
55 |
+
|
56 |
+
config_class = ZhCLIPConfig
|
57 |
+
base_model_prefix = "zhclip"
|
58 |
+
supports_gradient_checkpointing = False
|
59 |
+
_keys_to_ignore_on_load_missing = [r"position_ids"]
|
60 |
+
|
61 |
+
def _init_weights(self, module):
|
62 |
+
"""Initialize the weights"""
|
63 |
+
if isinstance(module, nn.Linear):
|
64 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
65 |
+
if module.bias is not None:
|
66 |
+
module.bias.data.zero_()
|
67 |
+
elif isinstance(module, nn.Embedding):
|
68 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
69 |
+
if module.padding_idx is not None:
|
70 |
+
module.weight.data[module.padding_idx].zero_()
|
71 |
+
elif isinstance(module, nn.LayerNorm):
|
72 |
+
module.bias.data.zero_()
|
73 |
+
module.weight.data.fill_(1.0)
|
74 |
+
|
75 |
+
|
76 |
+
class ZhCLIPModel(ZhCLIPPreTrainedModel):
|
77 |
+
def __init__(
|
78 |
+
self,
|
79 |
+
config: Optional[ZhCLIPConfig] = None,
|
80 |
+
vision_model: Optional[PreTrainedModel] = None,
|
81 |
+
text_model: Optional[PreTrainedModel] = None,
|
82 |
+
):
|
83 |
+
|
84 |
+
if config is None and (vision_model is None or text_model is None):
|
85 |
+
raise ValueError("Either a configuration or an vision and a text model has to be provided")
|
86 |
+
|
87 |
+
if config is None:
|
88 |
+
config = ZhCLIPConfig(vision_model.config, text_model.config)
|
89 |
+
else:
|
90 |
+
if not isinstance(config, self.config_class):
|
91 |
+
raise ValueError(f"config: {config} has to be of type {self.config_class}")
|
92 |
+
|
93 |
+
# initialize with config
|
94 |
+
super().__init__(config)
|
95 |
+
|
96 |
+
if vision_model is None:
|
97 |
+
if isinstance(config.vision_config, CLIPVisionConfig):
|
98 |
+
vision_model = CLIPVisionModel(config.vision_config).vision_model
|
99 |
+
else:
|
100 |
+
vision_model = AutoModel.from_config(config.vision_config)
|
101 |
+
|
102 |
+
if text_model is None:
|
103 |
+
text_model = AutoModel.from_config(config.text_config)
|
104 |
+
|
105 |
+
self.vision_model = vision_model
|
106 |
+
self.text_model = text_model
|
107 |
+
|
108 |
+
# make sure that the individual model's config refers to the shared config
|
109 |
+
# so that the updates to the config will be synced
|
110 |
+
self.vision_model.config = self.config.vision_config
|
111 |
+
self.text_model.config = self.config.text_config
|
112 |
+
|
113 |
+
self.vision_embed_dim = config.vision_config.hidden_size
|
114 |
+
self.text_embed_dim = config.text_config.hidden_size
|
115 |
+
self.coattention_dim = config.hidden_size
|
116 |
+
|
117 |
+
# add projection layers
|
118 |
+
mlp_hidden_size = (self.text_embed_dim + self.coattention_dim) // 2
|
119 |
+
self.text_projection = nn.Sequential(
|
120 |
+
nn.Linear(self.text_embed_dim, mlp_hidden_size, bias=False),
|
121 |
+
nn.GELU(),
|
122 |
+
nn.Linear(mlp_hidden_size, self.coattention_dim, bias=False),
|
123 |
+
)
|
124 |
+
self.text_pooler = MeanPooler()
|
125 |
+
self.visual_projection = nn.Linear(self.vision_embed_dim, self.coattention_dim)
|
126 |
+
|
127 |
+
|
128 |
+
def forward(
|
129 |
+
self,
|
130 |
+
input_ids: Optional[torch.LongTensor] = None,
|
131 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
132 |
+
attention_mask: Optional[torch.Tensor] = None,
|
133 |
+
position_ids: Optional[torch.LongTensor] = None,
|
134 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
135 |
+
patch_ids = None,
|
136 |
+
extend_token_type_ids = None,
|
137 |
+
return_loss: Optional[bool] = None,
|
138 |
+
return_dict: Optional[bool] = None,
|
139 |
+
) -> Union[Tuple[torch.Tensor], ZhCLIPModelOutput]:
|
140 |
+
|
141 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
142 |
+
image_features = self.get_image_features(
|
143 |
+
pixel_values=pixel_values,
|
144 |
+
return_dict=return_dict,
|
145 |
+
)
|
146 |
+
text_features = self.get_text_features(
|
147 |
+
input_ids=input_ids,
|
148 |
+
attention_mask=attention_mask,
|
149 |
+
token_type_ids=token_type_ids,
|
150 |
+
position_ids=position_ids,
|
151 |
+
return_dict=return_dict,
|
152 |
+
)
|
153 |
+
return ZhCLIPModelOutput(
|
154 |
+
image_features = image_features,
|
155 |
+
text_features = text_features,
|
156 |
+
)
|
157 |
+
|
158 |
+
|
159 |
+
@classmethod
|
160 |
+
def from_pretrained(cls, *args, **kwargs):
|
161 |
+
# At the moment fast initialization is not supported
|
162 |
+
# for composite models
|
163 |
+
kwargs["_fast_init"] = False
|
164 |
+
return super().from_pretrained(*args, **kwargs)
|
165 |
+
|
166 |
+
|
167 |
+
def get_text_features(
|
168 |
+
self,
|
169 |
+
input_ids=None,
|
170 |
+
attention_mask=None,
|
171 |
+
position_ids=None,
|
172 |
+
token_type_ids=None,
|
173 |
+
output_attentions=None,
|
174 |
+
output_hidden_states=None,
|
175 |
+
return_dict=None,
|
176 |
+
):
|
177 |
+
text_outputs = self.text_model(
|
178 |
+
input_ids=input_ids,
|
179 |
+
attention_mask=attention_mask,
|
180 |
+
position_ids=position_ids,
|
181 |
+
token_type_ids=token_type_ids,
|
182 |
+
#output_attentions=output_attentions,
|
183 |
+
#output_hidden_states=output_hidden_states,
|
184 |
+
return_dict=return_dict,
|
185 |
+
)
|
186 |
+
if attention_mask is None:
|
187 |
+
attention_mask = (input_ids != self.config.pad_token_id).long()
|
188 |
+
text_pool = self.text_pooler(text_outputs[0], attention_mask)
|
189 |
+
text_feat = self.text_projection(text_pool)
|
190 |
+
return text_feat
|
191 |
+
|
192 |
+
|
193 |
+
def get_image_features(
|
194 |
+
self,
|
195 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
196 |
+
output_attentions: Optional[bool] = None,
|
197 |
+
output_hidden_states: Optional[bool] = None,
|
198 |
+
return_dict: Optional[bool] = None,
|
199 |
+
) -> torch.FloatTensor:
|
200 |
+
r"""
|
201 |
+
Returns:
|
202 |
+
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
|
203 |
+
applying the projection layer to the pooled output of [`CLIPVisionModel`].
|
204 |
+
|
205 |
+
Examples:
|
206 |
+
|
207 |
+
```python
|
208 |
+
>>> from PIL import Image
|
209 |
+
>>> import requests
|
210 |
+
>>> from transformers import AutoProcessor, CLIPModel
|
211 |
+
|
212 |
+
>>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
213 |
+
>>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
214 |
+
|
215 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
216 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
217 |
+
|
218 |
+
>>> inputs = processor(images=image, return_tensors="pt")
|
219 |
+
|
220 |
+
>>> image_features = model.get_image_features(**inputs)
|
221 |
+
```"""
|
222 |
+
# Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
|
223 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
224 |
+
output_hidden_states = (
|
225 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
226 |
+
)
|
227 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
228 |
+
|
229 |
+
vision_outputs = self.vision_model(
|
230 |
+
pixel_values=pixel_values,
|
231 |
+
output_attentions=output_attentions,
|
232 |
+
output_hidden_states=output_hidden_states,
|
233 |
+
return_dict=return_dict,
|
234 |
+
)
|
235 |
+
|
236 |
+
pooled_output = vision_outputs[1] # pooled_output
|
237 |
+
image_features = self.visual_projection(pooled_output)
|
238 |
+
|
239 |
+
return image_features
|
zhclip/processing_zhclip.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for ZH-CLIP
|
17 |
+
"""
|
18 |
+
|
19 |
+
import warnings
|
20 |
+
|
21 |
+
from transformers.processing_utils import ProcessorMixin
|
22 |
+
from transformers.tokenization_utils_base import BatchEncoding
|
23 |
+
|
24 |
+
|
25 |
+
class ZhCLIPProcessor(ProcessorMixin):
|
26 |
+
r"""
|
27 |
+
Constructs a VLE processor which wraps an image processor and a tokenizer into a single
|
28 |
+
processor.
|
29 |
+
|
30 |
+
[`VLEProcessor`] offers all the functionalities of [`AutoImageProcessor`] and [`AutoTokenizer`].
|
31 |
+
See the [`~VLEProcessor.__call__`] and [`~VLEProcessor.decode`] for more
|
32 |
+
information.
|
33 |
+
|
34 |
+
Args:
|
35 |
+
image_processor ([`AutoImageProcessor`]):
|
36 |
+
The image processor is a required input.
|
37 |
+
tokenizer ([`PreTrainedTokenizer`]):
|
38 |
+
The tokenizer is a required input.
|
39 |
+
"""
|
40 |
+
attributes = ["image_processor", "tokenizer"]
|
41 |
+
image_processor_class = "CLIPImageProcessor"
|
42 |
+
tokenizer_class = "BertTokenizer"
|
43 |
+
|
44 |
+
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
45 |
+
if "feature_extractor" in kwargs:
|
46 |
+
warnings.warn(
|
47 |
+
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
|
48 |
+
" instead.",
|
49 |
+
FutureWarning,
|
50 |
+
)
|
51 |
+
feature_extractor = kwargs.pop("feature_extractor")
|
52 |
+
|
53 |
+
image_processor = image_processor if image_processor is not None else feature_extractor
|
54 |
+
if image_processor is None:
|
55 |
+
raise ValueError("You need to specify an `image_processor`.")
|
56 |
+
if tokenizer is None:
|
57 |
+
raise ValueError("You need to specify a `tokenizer`.")
|
58 |
+
|
59 |
+
super().__init__(image_processor, tokenizer)
|
60 |
+
self.current_processor = self.image_processor
|
61 |
+
|
62 |
+
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
|
63 |
+
"""
|
64 |
+
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
|
65 |
+
and `kwargs` arguments to VLETokenizer's [`~PreTrainedTokenizer.__call__`] if `text` is not
|
66 |
+
`None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
|
67 |
+
AutoImageProcessor's [`~AutoImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
|
68 |
+
of the above two methods for more information.
|
69 |
+
|
70 |
+
Args:
|
71 |
+
text (`str`, `List[str]`, `List[List[str]]`):
|
72 |
+
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
|
73 |
+
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
|
74 |
+
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
|
75 |
+
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
|
76 |
+
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
|
77 |
+
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
|
78 |
+
number of channels, H and W are image height and width.
|
79 |
+
|
80 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
81 |
+
If set, will return tensors of a particular framework. Acceptable values are:
|
82 |
+
|
83 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
84 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
85 |
+
- `'np'`: Return NumPy `np.ndarray` objects.
|
86 |
+
- `'jax'`: Return JAX `jnp.ndarray` objects.
|
87 |
+
|
88 |
+
Returns:
|
89 |
+
[`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
|
90 |
+
|
91 |
+
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
|
92 |
+
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
|
93 |
+
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
|
94 |
+
`None`).
|
95 |
+
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
|
96 |
+
"""
|
97 |
+
|
98 |
+
if text is None and images is None:
|
99 |
+
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
100 |
+
|
101 |
+
if text is not None:
|
102 |
+
encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
|
103 |
+
|
104 |
+
if images is not None:
|
105 |
+
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
106 |
+
|
107 |
+
if text is not None and images is not None:
|
108 |
+
encoding["pixel_values"] = image_features.pixel_values
|
109 |
+
return encoding
|
110 |
+
elif text is not None:
|
111 |
+
return encoding
|
112 |
+
else:
|
113 |
+
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
114 |
+
|
115 |
+
@property
|
116 |
+
def model_input_names(self):
|
117 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
118 |
+
image_processor_input_names = self.image_processor.model_input_names
|
119 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|
120 |
+
|
121 |
+
@property
|
122 |
+
def feature_extractor_class(self):
|
123 |
+
warnings.warn(
|
124 |
+
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
|
125 |
+
FutureWarning,
|
126 |
+
)
|
127 |
+
return self.image_processor_class
|
128 |
+
|
129 |
+
@property
|
130 |
+
def feature_extractor(self):
|
131 |
+
warnings.warn(
|
132 |
+
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
|
133 |
+
FutureWarning,
|
134 |
+
)
|
135 |
+
return self.image_processor
|