Spaces:
Sleeping
Sleeping
:recycle: [Refactor] Move MODELS_MAP to constants
Browse files- constants/__init__.py +0 -0
- constants/models.py +8 -0
- networks/message_streamer.py +15 -19
constants/__init__.py
ADDED
File without changes
|
constants/models.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MODEL_MAP = {
|
2 |
+
"mixtral-8x7b": "mistralai/Mixtral-8x7B-Instruct-v0.1", # [Recommended]
|
3 |
+
"nous-mixtral-8x7b": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
4 |
+
"mistral-7b": "mistralai/Mistral-7B-Instruct-v0.2",
|
5 |
+
"openchat-3.5": "openchat/openchat-3.5-0106",
|
6 |
+
"gemma-7b": "google/gemma-7b-it",
|
7 |
+
"default": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
8 |
+
}
|
networks/message_streamer.py
CHANGED
@@ -1,26 +1,17 @@
|
|
1 |
import json
|
2 |
import re
|
3 |
import requests
|
|
|
4 |
from tiktoken import get_encoding as tiktoken_get_encoding
|
|
|
|
|
5 |
from messagers.message_outputer import OpenaiStreamOutputer
|
|
|
6 |
from utils.logger import logger
|
7 |
from utils.enver import enver
|
8 |
-
from transformers import AutoTokenizer
|
9 |
|
10 |
|
11 |
class MessageStreamer:
|
12 |
-
MODEL_MAP = {
|
13 |
-
"mixtral-8x7b": "mistralai/Mixtral-8x7B-Instruct-v0.1", # 72.62, fast [Recommended]
|
14 |
-
"mistral-7b": "mistralai/Mistral-7B-Instruct-v0.2", # 65.71, fast
|
15 |
-
"nous-mixtral-8x7b": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
16 |
-
"openchat-3.5": "openchat/openchat-3.5-0106",
|
17 |
-
"gemma-7b": "google/gemma-7b-it",
|
18 |
-
# "zephyr-7b-beta": "HuggingFaceH4/zephyr-7b-beta", # ❌ Too Slow
|
19 |
-
# "llama-70b": "meta-llama/Llama-2-70b-chat-hf", # ❌ Require Pro User
|
20 |
-
# "codellama-34b": "codellama/CodeLlama-34b-Instruct-hf", # ❌ Low Score
|
21 |
-
# "falcon-180b": "tiiuae/falcon-180B-chat", # ❌ Require Pro User
|
22 |
-
"default": "mistralai/Mixtral-8x7B-Instruct-v0.1",
|
23 |
-
}
|
24 |
STOP_SEQUENCES_MAP = {
|
25 |
"mixtral-8x7b": "</s>",
|
26 |
"mistral-7b": "</s>",
|
@@ -35,17 +26,22 @@ class MessageStreamer:
|
|
35 |
"openchat-3.5": 8192,
|
36 |
"gemma-7b": 8192,
|
37 |
}
|
38 |
-
TOKEN_RESERVED =
|
39 |
|
40 |
def __init__(self, model: str):
|
41 |
-
if model in
|
42 |
self.model = model
|
43 |
else:
|
44 |
self.model = "default"
|
45 |
-
self.model_fullname =
|
46 |
self.message_outputer = OpenaiStreamOutputer()
|
47 |
-
|
48 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
def parse_line(self, line):
|
51 |
line = line.decode("utf-8")
|
@@ -98,7 +94,7 @@ class MessageStreamer:
|
|
98 |
token_limit = int(
|
99 |
self.TOKEN_LIMIT_MAP[self.model]
|
100 |
- self.TOKEN_RESERVED
|
101 |
-
- self.count_tokens(prompt)
|
102 |
)
|
103 |
if token_limit <= 0:
|
104 |
raise ValueError("Prompt exceeded token limit!")
|
|
|
1 |
import json
|
2 |
import re
|
3 |
import requests
|
4 |
+
|
5 |
from tiktoken import get_encoding as tiktoken_get_encoding
|
6 |
+
from transformers import AutoTokenizer
|
7 |
+
|
8 |
from messagers.message_outputer import OpenaiStreamOutputer
|
9 |
+
from constants.models import MODEL_MAP
|
10 |
from utils.logger import logger
|
11 |
from utils.enver import enver
|
|
|
12 |
|
13 |
|
14 |
class MessageStreamer:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
STOP_SEQUENCES_MAP = {
|
16 |
"mixtral-8x7b": "</s>",
|
17 |
"mistral-7b": "</s>",
|
|
|
26 |
"openchat-3.5": 8192,
|
27 |
"gemma-7b": 8192,
|
28 |
}
|
29 |
+
TOKEN_RESERVED = 20
|
30 |
|
31 |
def __init__(self, model: str):
|
32 |
+
if model in MODEL_MAP.keys():
|
33 |
self.model = model
|
34 |
else:
|
35 |
self.model = "default"
|
36 |
+
self.model_fullname = MODEL_MAP[self.model]
|
37 |
self.message_outputer = OpenaiStreamOutputer()
|
38 |
+
|
39 |
+
if self.model == "gemma-7b":
|
40 |
+
# this is not wrong, as repo `google/gemma-7b-it` is gated and must authenticate to access it
|
41 |
+
# so I use mistral-7b as a fallback
|
42 |
+
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_MAP["mistral-7b"])
|
43 |
+
else:
|
44 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.model_fullname)
|
45 |
|
46 |
def parse_line(self, line):
|
47 |
line = line.decode("utf-8")
|
|
|
94 |
token_limit = int(
|
95 |
self.TOKEN_LIMIT_MAP[self.model]
|
96 |
- self.TOKEN_RESERVED
|
97 |
+
- self.count_tokens(prompt)
|
98 |
)
|
99 |
if token_limit <= 0:
|
100 |
raise ValueError("Prompt exceeded token limit!")
|