File size: 4,097 Bytes
d67d5cf
 
 
 
 
 
70dbbe5
d67d5cf
9ab93e4
c64d0a9
d67d5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe18ba8
 
d67d5cf
 
 
 
 
 
 
 
 
 
70dbbe5
 
 
 
 
 
 
 
 
 
 
 
 
 
d67d5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29de730
 
d67d5cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch

from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread

MODEL = "tiiuae/falcon3-7b-instruct-1.58bit"

TITLE = "<h1><center>Falcon3-1.58bit-instruct playground</center></h1>"
SUB_TITLE = """<center>This interface has been created for quick validation purposes, do not use it for production.</center>"""

CSS = """
.duplicate-button {
    margin: auto !important;
    color: white !important;
    background: black !important;
    border-radius: 100vh !important;
}
h3 {
    text-align: center;
}
"""

END_MESSAGE = """
\n
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
"""

device = "cuda" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
    MODEL,
    torch_dtype=torch.bfloat16,
).to(device)

model = torch.compile(model)

def stream_chat(
    message: str, 
    history: list, 
    temperature: float = 0.3, 
    max_new_tokens: int = 128, 
    top_p: float = 1.0, 
    top_k: int = 20, 
    penalty: float = 1.2,
):
    print(f'message: {message}')
    print(f'history: {history}')

    conversation = []
    for prompt, answer in history:
        conversation.extend([
            {"role": "user", "content": prompt}, 
            {"role": "assistant", "content": answer},
        ])


    conversation.append({"role": "user", "content": message})
    input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt = True)
        
    inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
    streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
    
    generate_kwargs = dict(
        input_ids=inputs, 
        max_new_tokens = max_new_tokens,
        do_sample = False if temperature == 0 else True,
        top_p = top_p,
        top_k = top_k,
        temperature = temperature,
        streamer=streamer,
        pad_token_id = 10,
    )

    with torch.no_grad():
        thread = Thread(target=model.generate, kwargs=generate_kwargs)
        thread.start()
        
    buffer = ""
    for new_text in streamer:
        buffer += new_text
        yield buffer


    print(f'response: {buffer}')
            
chatbot = gr.Chatbot(height=600)

with gr.Blocks(css=CSS, theme="soft") as demo:
    gr.HTML(TITLE)
    gr.HTML(SUB_TITLE)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
    gr.ChatInterface(
        fn=stream_chat,
        chatbot=chatbot,
        fill_height=True,
        additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
        additional_inputs=[
            gr.Slider(
                minimum=0,
                maximum=1,
                step=0.1,
                value=0.3,
                label="Temperature",
                render=False,
            ),
            gr.Slider(
                minimum=128,
                maximum=4096,
                step=1,
                value=128,
                label="Max new tokens",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=1.0,
                step=0.1,
                value=1.0,
                label="top_p",
                render=False,
            ),
            gr.Slider(
                minimum=1,
                maximum=20,
                step=1,
                value=20,
                label="top_k",
                render=False,
            ),
            gr.Slider(
                minimum=0.0,
                maximum=2.0,
                step=0.1,
                value=1.2,
                label="Repetition penalty",
                render=False,
            ),
        ],
        examples=[
            ["Hello there, can you suggest few places to visit in UAE?"],
            ["What UAE is known for?"],
        ],
        cache_examples=False,
    )


if __name__ == "__main__":
    demo.launch()