import torch import spaces from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer import gradio as gr from threading import Thread MODEL = "tiiuae/falcon3-7b-1.58bit" TITLE = "

Falcon3-1.58 bit playground

" SUB_TITLE = """
This interface has been created for quick validation purposes, do not use it for production. Bear also in mind the model is a pretrained model.
""" CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; } """ END_MESSAGE = """ \n **The conversation has reached to its end, please press "Clear" to restart a new conversation** """ device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.bfloat16, ).to(device) @spaces.GPU def stream_chat( message: str, history: list, temperature: float = 0.3, max_new_tokens: int = 128, top_p: float = 1.0, top_k: int = 20, penalty: float = 1.2, ): print(f'message: {message}') inputs = tokenizer.encode(message, return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=inputs, max_new_tokens = max_new_tokens, do_sample = False if temperature == 0 else True, top_p = top_p, top_k = top_k, temperature = temperature, streamer=streamer, pad_token_id = 10, ) with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer print(f'response: {buffer}') chatbot = gr.Chatbot(height=600) with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.HTML(SUB_TITLE) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") gr.ChatInterface( fn=stream_chat, chatbot=chatbot, fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider( minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature", render=False, ), gr.Slider( minimum=20, maximum=256, step=1, value=128, label="Max new tokens", render=False, ), gr.Slider( minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False, ), gr.Slider( minimum=1, maximum=20, step=1, value=20, label="top_k", render=False, ), gr.Slider( minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False, ), ], examples=[ ["Hello there, can you suggest few places to visit in UAE?"], ["What UAE is known for?"], ], cache_examples=False, ) if __name__ == "__main__": demo.launch()