import torch
import spaces
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import gradio as gr
from threading import Thread
MODEL = "tiiuae/falcon3-7b-1.58bit"
TITLE = "
Falcon3-1.58 bit playground
"
SUB_TITLE = """This interface has been created for quick validation purposes, do not use it for production. Bear also in mind the model is a pretrained model."""
CSS = """
.duplicate-button {
margin: auto !important;
color: white !important;
background: black !important;
border-radius: 100vh !important;
}
h3 {
text-align: center;
}
"""
END_MESSAGE = """
\n
**The conversation has reached to its end, please press "Clear" to restart a new conversation**
"""
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(MODEL)
model = AutoModelForCausalLM.from_pretrained(
MODEL,
torch_dtype=torch.bfloat16,
).to(device)
@spaces.GPU
def stream_chat(
message: str,
history: list,
temperature: float = 0.3,
max_new_tokens: int = 128,
top_p: float = 1.0,
top_k: int = 20,
penalty: float = 1.2,
):
print(f'message: {message}')
inputs = tokenizer.encode(message, return_tensors="pt").to(device)
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids=inputs,
max_new_tokens = max_new_tokens,
do_sample = False if temperature == 0 else True,
top_p = top_p,
top_k = top_k,
temperature = temperature,
streamer=streamer,
pad_token_id = 10,
)
with torch.no_grad():
thread = Thread(target=model.generate, kwargs=generate_kwargs)
thread.start()
buffer = ""
for new_text in streamer:
buffer += new_text
yield buffer
print(f'response: {buffer}')
chatbot = gr.Chatbot(height=600)
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.HTML(TITLE)
gr.HTML(SUB_TITLE)
gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button")
gr.ChatInterface(
fn=stream_chat,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(
minimum=0,
maximum=1,
step=0.1,
value=0.3,
label="Temperature",
render=False,
),
gr.Slider(
minimum=20,
maximum=256,
step=1,
value=128,
label="Max new tokens",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
label="top_p",
render=False,
),
gr.Slider(
minimum=1,
maximum=20,
step=1,
value=20,
label="top_k",
render=False,
),
gr.Slider(
minimum=0.0,
maximum=2.0,
step=0.1,
value=1.2,
label="Repetition penalty",
render=False,
),
],
examples=[
["Hello there, can you suggest few places to visit in UAE?"],
["What UAE is known for?"],
],
cache_examples=False,
)
if __name__ == "__main__":
demo.launch()