import subprocess import sys import shlex import spaces import torch import uuid import os import json from pathlib import Path import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer from threading import Thread # install packages for mamba def install_mamba(): subprocess.run(shlex.split("pip install https://github.com/Dao-AILab/causal-conv1d/releases/download/v1.4.0/causal_conv1d-1.4.0+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) subprocess.run(shlex.split("pip install https://github.com/state-spaces/mamba/releases/download/v2.2.2/mamba_ssm-2.2.2+cu122torch2.3cxx11abiFALSE-cp310-cp310-linux_x86_64.whl")) install_mamba() MODEL = "tiiuae/Falcon3-Mamba-7B-Instruct" TITLE = "

Falcon3-Mamba-7B-Instruct playground

" SUB_TITLE = """
Playground of Falcon3-Mamba-7B-Instruct
""" SYSTEM_PROMPT = os.getenv('SYSTEM_PROMPT') CSS = """ .duplicate-button { margin: auto !important; color: white !important; background: black !important; border-radius: 100vh !important; } h3 { text-align: center; /* Fix for chat container */ .chat-container { height: 600px !important; overflow-y: auto !important; flex-direction: column !important; } .messages-container { flex-grow: 1 !important; overflow-y: auto !important; padding-right: 10px !important; } /* Ensure consistent height */ .contain { height: 100% !important; } """ END_MESSAGE = """ \n **The conversation has reached to its end, please press "Clear" to restart a new conversation** """ device = "cuda" # for GPU usage or "cpu" for CPU usage tokenizer = AutoTokenizer.from_pretrained(MODEL) model = AutoModelForCausalLM.from_pretrained( MODEL, torch_dtype=torch.bfloat16, ).to(device) if device == "cuda": model = torch.compile(model) @spaces.GPU def stream_chat( message: str, history: list, temperature: float = 0.3, max_new_tokens: int = 100, top_p: float = 1.0, top_k: int = 20, penalty: float = 1.2, ): print(f'message: {message}') print(f'history: {history}') conversation = [] for prompt, answer in history: conversation.extend([ {"role": 'system', "content": SYSTEM_PROMPT }, {"role": "user", "content": prompt}, {"role": "assistant", "content": answer}, ]) conversation.append({"role": "user", "content": message}) input_text = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True) inputs = tokenizer.encode(input_text, return_tensors="pt").to(device) streamer = TextIteratorStreamer(tokenizer, timeout=40.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids=inputs, max_new_tokens=max_new_tokens, do_sample=False if temperature == 0 else True, top_p=top_p, top_k=top_k, temperature=temperature, streamer=streamer, pad_token_id=11, ) with torch.no_grad(): thread = Thread(target=model.generate, kwargs=generate_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text buffer = buffer.replace("\nUser", "") buffer = buffer.replace("\nSystem", "") yield buffer print(f'response: {buffer}') with gr.Blocks(css=CSS, theme="soft") as demo: gr.HTML(TITLE) gr.HTML(SUB_TITLE) gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") chat_interface = gr.ChatInterface( fn=stream_chat, chatbot=gr.Chatbot( height=600, container=True, elem_classes=["chat-container"] ), fill_height=True, additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False, render=False), additional_inputs=[ gr.Slider(minimum=0, maximum=1, step=0.1, value=0.3, label="Temperature", render=False), gr.Slider(minimum=128, maximum=32768, step=1, value=1024, label="Max new tokens", render=False), gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p", render=False), gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k", render=False), gr.Slider(minimum=0.0, maximum=2.0, step=0.1, value=1.2, label="Repetition penalty", render=False), ], examples=[ ["Hello there, can you suggest few places to visit in UAE?"], ["What UAE is known for?"], ], cache_examples=False, ) if __name__ == "__main__": demo.launch()