File size: 8,466 Bytes
85ecc61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import inspect
import numpy as np
# openvino
from openvino.runtime import Core
# tokenizer
from transformers import CLIPTokenizer
# utils
from tqdm import tqdm
from huggingface_hub import hf_hub_download
from diffusers import LMSDiscreteScheduler, PNDMScheduler
import cv2
def result(var):
return next(iter(var.values()))
class StableDiffusionEngine:
def __init__(
self,
scheduler,
model="bes-dev/stable-diffusion-v1-4-openvino",
tokenizer="openai/clip-vit-large-patch14",
device="CPU"
):
self.tokenizer = CLIPTokenizer.from_pretrained(tokenizer)
self.scheduler = scheduler
# models
self.core = Core()
# text features
self._text_encoder = self.core.read_model(
hf_hub_download(repo_id=model, filename="text_encoder.xml"),
hf_hub_download(repo_id=model, filename="text_encoder.bin")
)
self.text_encoder = self.core.compile_model(self._text_encoder, device)
# diffusion
self._unet = self.core.read_model(
hf_hub_download(repo_id=model, filename="unet.xml"),
hf_hub_download(repo_id=model, filename="unet.bin")
)
self.unet = self.core.compile_model(self._unet, device)
self.latent_shape = tuple(self._unet.inputs[0].shape)[1:]
# decoder
self._vae_decoder = self.core.read_model(
hf_hub_download(repo_id=model, filename="vae_decoder.xml"),
hf_hub_download(repo_id=model, filename="vae_decoder.bin")
)
self.vae_decoder = self.core.compile_model(self._vae_decoder, device)
# encoder
self._vae_encoder = self.core.read_model(
hf_hub_download(repo_id=model, filename="vae_encoder.xml"),
hf_hub_download(repo_id=model, filename="vae_encoder.bin")
)
self.vae_encoder = self.core.compile_model(self._vae_encoder, device)
self.init_image_shape = tuple(self._vae_encoder.inputs[0].shape)[2:]
def _preprocess_mask(self, mask):
h, w = mask.shape
if h != self.init_image_shape[0] and w != self.init_image_shape[1]:
mask = cv2.resize(
mask,
(self.init_image_shape[1], self.init_image_shape[0]),
interpolation = cv2.INTER_NEAREST
)
mask = cv2.resize(
mask,
(self.init_image_shape[1] // 8, self.init_image_shape[0] // 8),
interpolation = cv2.INTER_NEAREST
)
mask = mask.astype(np.float32) / 255.0
mask = np.tile(mask, (4, 1, 1))
mask = mask[None].transpose(0, 1, 2, 3)
mask = 1 - mask
return mask
def _preprocess_image(self, image):
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
h, w = image.shape[1:]
if h != self.init_image_shape[0] and w != self.init_image_shape[1]:
image = cv2.resize(
image,
(self.init_image_shape[1], self.init_image_shape[0]),
interpolation=cv2.INTER_LANCZOS4
)
# normalize
image = image.astype(np.float32) / 255.0
image = 2.0 * image - 1.0
# to batch
image = image[None].transpose(0, 3, 1, 2)
return image
def _encode_image(self, init_image):
moments = result(self.vae_encoder.infer_new_request({
"init_image": self._preprocess_image(init_image)
}))
mean, logvar = np.split(moments, 2, axis=1)
std = np.exp(logvar * 0.5)
latent = (mean + std * np.random.randn(*mean.shape)) * 0.18215
return latent
def __call__(
self,
prompt,
init_image = None,
mask = None,
strength = 0.5,
num_inference_steps = 32,
guidance_scale = 7.5,
eta = 0.0
):
# extract condition
tokens = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True
).input_ids
text_embeddings = result(
self.text_encoder.infer_new_request({"tokens": np.array([tokens])})
)
# do classifier free guidance
if guidance_scale > 1.0:
tokens_uncond = self.tokenizer(
"",
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True
).input_ids
uncond_embeddings = result(
self.text_encoder.infer_new_request({"tokens": np.array([tokens_uncond])})
)
text_embeddings = np.concatenate((uncond_embeddings, text_embeddings), axis=0)
# set timesteps
accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys())
extra_set_kwargs = {}
offset = 0
if accepts_offset:
offset = 1
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# initialize latent latent
if init_image is None:
latents = np.random.randn(*self.latent_shape)
init_timestep = num_inference_steps
else:
init_latents = self._encode_image(init_image)
init_timestep = int(num_inference_steps * strength) + offset
init_timestep = min(init_timestep, num_inference_steps)
timesteps = np.array([[self.scheduler.timesteps[-init_timestep]]]).astype(np.long)
noise = np.random.randn(*self.latent_shape)
latents = self.scheduler.add_noise(init_latents, noise, timesteps)[0]
if init_image is not None and mask is not None:
mask = self._preprocess_mask(mask)
else:
mask = None
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents * self.scheduler.sigmas[0]
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
t_start = max(num_inference_steps - init_timestep + offset, 0)
for i, t in tqdm(enumerate(self.scheduler.timesteps[t_start:])):
# expand the latents if we are doing classifier free guidance
latent_model_input = np.stack([latents, latents], 0) if guidance_scale > 1.0 else latents[None]
if isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[i]
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
# predict the noise residual
noise_pred = result(self.unet.infer_new_request({
"latent_model_input": latent_model_input,
"t": t,
"encoder_hidden_states": text_embeddings
}))
# perform guidance
if guidance_scale > 1.0:
noise_pred = noise_pred[0] + guidance_scale * (noise_pred[1] - noise_pred[0])
# compute the previous noisy sample x_t -> x_t-1
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = self.scheduler.step(noise_pred, i, latents, **extra_step_kwargs)["prev_sample"]
else:
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs)["prev_sample"]
# masking for inapinting
if mask is not None:
init_latents_proper = self.scheduler.add_noise(init_latents, noise, t)
latents = ((init_latents_proper * mask) + (latents * (1 - mask)))[0]
image = result(self.vae_decoder.infer_new_request({
"latents": np.expand_dims(latents, 0)
}))
# convert tensor to opencv's image format
image = (image / 2 + 0.5).clip(0, 1)
image = (image[0].transpose(1, 2, 0)[:, :, ::-1] * 255).astype(np.uint8)
return image
|