Spaces:
Running
on
T4
Running
on
T4
import argparse, os, sys, glob | |
import cv2 | |
import torch | |
import numpy as np | |
from omegaconf import OmegaConf | |
from PIL import Image | |
from tqdm import tqdm, trange | |
from imwatermark import WatermarkEncoder | |
from itertools import islice | |
from einops import rearrange | |
from torchvision.utils import make_grid | |
import time | |
from pytorch_lightning import seed_everything | |
from torch import autocast | |
from contextlib import contextmanager, nullcontext | |
from ldm.util import instantiate_from_config | |
from ldm.models.diffusion.ddim import DDIMSampler | |
from ldm.models.diffusion.plms import PLMSSampler | |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker | |
from transformers import AutoFeatureExtractor | |
# load safety model | |
safety_model_id = "CompVis/stable-diffusion-safety-checker" | |
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id) | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id) | |
def chunk(it, size): | |
it = iter(it) | |
return iter(lambda: tuple(islice(it, size)), ()) | |
def numpy_to_pil(images): | |
""" | |
Convert a numpy image or a batch of images to a PIL image. | |
""" | |
if images.ndim == 3: | |
images = images[None, ...] | |
images = (images * 255).round().astype("uint8") | |
pil_images = [Image.fromarray(image) for image in images] | |
return pil_images | |
def load_model_from_config(config, ckpt, verbose=False): | |
print(f"Loading model from {ckpt}") | |
pl_sd = torch.load(ckpt, map_location="cpu") | |
if "global_step" in pl_sd: | |
print(f"Global Step: {pl_sd['global_step']}") | |
sd = pl_sd["state_dict"] | |
model = instantiate_from_config(config.model) | |
m, u = model.load_state_dict(sd, strict=False) | |
if len(m) > 0 and verbose: | |
print("missing keys:") | |
print(m) | |
if len(u) > 0 and verbose: | |
print("unexpected keys:") | |
print(u) | |
model.cuda() | |
model.eval() | |
return model | |
def put_watermark(img, wm_encoder=None): | |
if wm_encoder is not None: | |
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) | |
img = wm_encoder.encode(img, 'dwtDct') | |
img = Image.fromarray(img[:, :, ::-1]) | |
return img | |
def load_replacement(x): | |
try: | |
hwc = x.shape | |
y = Image.open("assets/rick.jpeg").convert("RGB").resize((hwc[1], hwc[0])) | |
y = (np.array(y)/255.0).astype(x.dtype) | |
assert y.shape == x.shape | |
return y | |
except Exception: | |
return x | |
def check_safety(x_image): | |
safety_checker_input = safety_feature_extractor(numpy_to_pil(x_image), return_tensors="pt") | |
x_checked_image, has_nsfw_concept = safety_checker(images=x_image, clip_input=safety_checker_input.pixel_values) | |
assert x_checked_image.shape[0] == len(has_nsfw_concept) | |
for i in range(len(has_nsfw_concept)): | |
if has_nsfw_concept[i]: | |
x_checked_image[i] = load_replacement(x_checked_image[i]) | |
return x_checked_image, has_nsfw_concept | |
def main(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--prompt", | |
type=str, | |
nargs="?", | |
default="a painting of a virus monster playing guitar", | |
help="the prompt to render" | |
) | |
parser.add_argument( | |
"--outdir", | |
type=str, | |
nargs="?", | |
help="dir to write results to", | |
default="outputs/txt2img-samples" | |
) | |
parser.add_argument( | |
"--skip_grid", | |
action='store_true', | |
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples", | |
) | |
parser.add_argument( | |
"--skip_save", | |
action='store_true', | |
help="do not save individual samples. For speed measurements.", | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
default=50, | |
help="number of ddim sampling steps", | |
) | |
parser.add_argument( | |
"--plms", | |
action='store_true', | |
help="use plms sampling", | |
) | |
parser.add_argument( | |
"--laion400m", | |
action='store_true', | |
help="uses the LAION400M model", | |
) | |
parser.add_argument( | |
"--fixed_code", | |
action='store_true', | |
help="if enabled, uses the same starting code across samples ", | |
) | |
parser.add_argument( | |
"--ddim_eta", | |
type=float, | |
default=0.0, | |
help="ddim eta (eta=0.0 corresponds to deterministic sampling", | |
) | |
parser.add_argument( | |
"--n_iter", | |
type=int, | |
default=2, | |
help="sample this often", | |
) | |
parser.add_argument( | |
"--H", | |
type=int, | |
default=512, | |
help="image height, in pixel space", | |
) | |
parser.add_argument( | |
"--W", | |
type=int, | |
default=512, | |
help="image width, in pixel space", | |
) | |
parser.add_argument( | |
"--C", | |
type=int, | |
default=4, | |
help="latent channels", | |
) | |
parser.add_argument( | |
"--f", | |
type=int, | |
default=8, | |
help="downsampling factor", | |
) | |
parser.add_argument( | |
"--n_samples", | |
type=int, | |
default=3, | |
help="how many samples to produce for each given prompt. A.k.a. batch size", | |
) | |
parser.add_argument( | |
"--n_rows", | |
type=int, | |
default=0, | |
help="rows in the grid (default: n_samples)", | |
) | |
parser.add_argument( | |
"--scale", | |
type=float, | |
default=7.5, | |
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))", | |
) | |
parser.add_argument( | |
"--from-file", | |
type=str, | |
help="if specified, load prompts from this file", | |
) | |
parser.add_argument( | |
"--config", | |
type=str, | |
default="configs/stable-diffusion/v1-inference.yaml", | |
help="path to config which constructs model", | |
) | |
parser.add_argument( | |
"--ckpt", | |
type=str, | |
default="models/ldm/stable-diffusion-v1/model.ckpt", | |
help="path to checkpoint of model", | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
default=42, | |
help="the seed (for reproducible sampling)", | |
) | |
parser.add_argument( | |
"--precision", | |
type=str, | |
help="evaluate at this precision", | |
choices=["full", "autocast"], | |
default="autocast" | |
) | |
opt = parser.parse_args() | |
if opt.laion400m: | |
print("Falling back to LAION 400M model...") | |
opt.config = "configs/latent-diffusion/txt2img-1p4B-eval.yaml" | |
opt.ckpt = "models/ldm/text2img-large/model.ckpt" | |
opt.outdir = "outputs/txt2img-samples-laion400m" | |
seed_everything(opt.seed) | |
config = OmegaConf.load(f"{opt.config}") | |
model = load_model_from_config(config, f"{opt.ckpt}") | |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") | |
model = model.to(device) | |
if opt.plms: | |
sampler = PLMSSampler(model) | |
else: | |
sampler = DDIMSampler(model) | |
os.makedirs(opt.outdir, exist_ok=True) | |
outpath = opt.outdir | |
print("Creating invisible watermark encoder (see https://github.com/ShieldMnt/invisible-watermark)...") | |
wm = "StableDiffusionV1" | |
wm_encoder = WatermarkEncoder() | |
wm_encoder.set_watermark('bytes', wm.encode('utf-8')) | |
batch_size = opt.n_samples | |
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size | |
if not opt.from_file: | |
prompt = opt.prompt | |
assert prompt is not None | |
data = [batch_size * [prompt]] | |
else: | |
print(f"reading prompts from {opt.from_file}") | |
with open(opt.from_file, "r") as f: | |
data = f.read().splitlines() | |
data = list(chunk(data, batch_size)) | |
sample_path = os.path.join(outpath, "samples") | |
os.makedirs(sample_path, exist_ok=True) | |
base_count = len(os.listdir(sample_path)) | |
grid_count = len(os.listdir(outpath)) - 1 | |
start_code = None | |
if opt.fixed_code: | |
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) | |
precision_scope = autocast if opt.precision=="autocast" else nullcontext | |
with torch.no_grad(): | |
with precision_scope("cuda"): | |
with model.ema_scope(): | |
tic = time.time() | |
all_samples = list() | |
for n in trange(opt.n_iter, desc="Sampling"): | |
for prompts in tqdm(data, desc="data"): | |
uc = None | |
if opt.scale != 1.0: | |
uc = model.get_learned_conditioning(batch_size * [""]) | |
if isinstance(prompts, tuple): | |
prompts = list(prompts) | |
c = model.get_learned_conditioning(prompts) | |
shape = [opt.C, opt.H // opt.f, opt.W // opt.f] | |
samples_ddim, _ = sampler.sample(S=opt.ddim_steps, | |
conditioning=c, | |
batch_size=opt.n_samples, | |
shape=shape, | |
verbose=False, | |
unconditional_guidance_scale=opt.scale, | |
unconditional_conditioning=uc, | |
eta=opt.ddim_eta, | |
x_T=start_code) | |
x_samples_ddim = model.decode_first_stage(samples_ddim) | |
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) | |
x_samples_ddim = x_samples_ddim.cpu().permute(0, 2, 3, 1).numpy() | |
x_checked_image, has_nsfw_concept = check_safety(x_samples_ddim) | |
x_checked_image_torch = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2) | |
if not opt.skip_save: | |
for x_sample in x_checked_image_torch: | |
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') | |
img = Image.fromarray(x_sample.astype(np.uint8)) | |
img = put_watermark(img, wm_encoder) | |
img.save(os.path.join(sample_path, f"{base_count:05}.png")) | |
base_count += 1 | |
if not opt.skip_grid: | |
all_samples.append(x_checked_image_torch) | |
if not opt.skip_grid: | |
# additionally, save as grid | |
grid = torch.stack(all_samples, 0) | |
grid = rearrange(grid, 'n b c h w -> (n b) c h w') | |
grid = make_grid(grid, nrow=n_rows) | |
# to image | |
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy() | |
img = Image.fromarray(grid.astype(np.uint8)) | |
img = put_watermark(img, wm_encoder) | |
img.save(os.path.join(outpath, f'grid-{grid_count:04}.png')) | |
grid_count += 1 | |
toc = time.time() | |
print(f"Your samples are ready and waiting for you here: \n{outpath} \n" | |
f" \nEnjoy.") | |
if __name__ == "__main__": | |
main() | |