Spaces:
Running
on
T4
Running
on
T4
model: | |
base_learning_rate: 4.5e-6 | |
target: ldm.models.autoencoder.AutoencoderKL | |
params: | |
monitor: "val/rec_loss" | |
embed_dim: 16 | |
lossconfig: | |
target: ldm.modules.losses.LPIPSWithDiscriminator | |
params: | |
disc_start: 50001 | |
kl_weight: 0.000001 | |
disc_weight: 0.5 | |
ddconfig: | |
double_z: True | |
z_channels: 16 | |
resolution: 256 | |
in_channels: 3 | |
out_ch: 3 | |
ch: 128 | |
ch_mult: [ 1,1,2,2,4] # num_down = len(ch_mult)-1 | |
num_res_blocks: 2 | |
attn_resolutions: [16] | |
dropout: 0.0 | |
data: | |
target: main.DataModuleFromConfig | |
params: | |
batch_size: 12 | |
wrap: True | |
train: | |
target: ldm.data.imagenet.ImageNetSRTrain | |
params: | |
size: 256 | |
degradation: pil_nearest | |
validation: | |
target: ldm.data.imagenet.ImageNetSRValidation | |
params: | |
size: 256 | |
degradation: pil_nearest | |
lightning: | |
callbacks: | |
image_logger: | |
target: main.ImageLogger | |
params: | |
batch_frequency: 1000 | |
max_images: 8 | |
increase_log_steps: True | |
trainer: | |
benchmark: True | |
accumulate_grad_batches: 2 | |