Spaces:
Running
on
T4
Running
on
T4
rromb
commited on
Commit
·
677e3db
1
Parent(s):
d2152a2
add vqgan loss with codebook statistic eval
Browse filesFormer-commit-id: f13bf9bf463d95b5a16aeadd2b02abde31f769f8
ldm/modules/losses/vqperceptual.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from einops import repeat
|
5 |
+
|
6 |
+
from taming.modules.discriminator.model import NLayerDiscriminator, weights_init
|
7 |
+
from taming.modules.losses.lpips import LPIPS
|
8 |
+
from taming.modules.losses.vqperceptual import hinge_d_loss, vanilla_d_loss
|
9 |
+
|
10 |
+
|
11 |
+
def hinge_d_loss_with_exemplar_weights(logits_real, logits_fake, weights):
|
12 |
+
assert weights.shape[0] == logits_real.shape[0] == logits_fake.shape[0]
|
13 |
+
loss_real = torch.mean(F.relu(1. - logits_real), dim=[1,2,3])
|
14 |
+
loss_fake = torch.mean(F.relu(1. + logits_fake), dim=[1,2,3])
|
15 |
+
loss_real = (weights * loss_real).sum() / weights.sum()
|
16 |
+
loss_fake = (weights * loss_fake).sum() / weights.sum()
|
17 |
+
d_loss = 0.5 * (loss_real + loss_fake)
|
18 |
+
return d_loss
|
19 |
+
|
20 |
+
def adopt_weight(weight, global_step, threshold=0, value=0.):
|
21 |
+
if global_step < threshold:
|
22 |
+
weight = value
|
23 |
+
return weight
|
24 |
+
|
25 |
+
|
26 |
+
def measure_perplexity(predicted_indices, n_embed):
|
27 |
+
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
28 |
+
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
29 |
+
encodings = F.one_hot(predicted_indices, n_embed).float().reshape(-1, n_embed)
|
30 |
+
avg_probs = encodings.mean(0)
|
31 |
+
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
32 |
+
cluster_use = torch.sum(avg_probs > 0)
|
33 |
+
return perplexity, cluster_use
|
34 |
+
|
35 |
+
def l1(x, y):
|
36 |
+
return torch.abs(x-y)
|
37 |
+
|
38 |
+
|
39 |
+
def l2(x, y):
|
40 |
+
return torch.pow((x-y), 2)
|
41 |
+
|
42 |
+
|
43 |
+
class VQLPIPSWithDiscriminator(nn.Module):
|
44 |
+
def __init__(self, disc_start, codebook_weight=1.0, pixelloss_weight=1.0,
|
45 |
+
disc_num_layers=3, disc_in_channels=3, disc_factor=1.0, disc_weight=1.0,
|
46 |
+
perceptual_weight=1.0, use_actnorm=False, disc_conditional=False,
|
47 |
+
disc_ndf=64, disc_loss="hinge", n_classes=None, perceptual_loss="lpips",
|
48 |
+
pixel_loss="l1"):
|
49 |
+
super().__init__()
|
50 |
+
assert disc_loss in ["hinge", "vanilla"]
|
51 |
+
assert perceptual_loss in ["lpips", "clips", "dists"]
|
52 |
+
assert pixel_loss in ["l1", "l2"]
|
53 |
+
self.codebook_weight = codebook_weight
|
54 |
+
self.pixel_weight = pixelloss_weight
|
55 |
+
if perceptual_loss == "lpips":
|
56 |
+
print(f"{self.__class__.__name__}: Running with LPIPS.")
|
57 |
+
self.perceptual_loss = LPIPS().eval()
|
58 |
+
else:
|
59 |
+
raise ValueError(f"Unknown perceptual loss: >> {perceptual_loss} <<")
|
60 |
+
self.perceptual_weight = perceptual_weight
|
61 |
+
|
62 |
+
if pixel_loss == "l1":
|
63 |
+
self.pixel_loss = l1
|
64 |
+
else:
|
65 |
+
self.pixel_loss = l2
|
66 |
+
|
67 |
+
self.discriminator = NLayerDiscriminator(input_nc=disc_in_channels,
|
68 |
+
n_layers=disc_num_layers,
|
69 |
+
use_actnorm=use_actnorm,
|
70 |
+
ndf=disc_ndf
|
71 |
+
).apply(weights_init)
|
72 |
+
self.discriminator_iter_start = disc_start
|
73 |
+
if disc_loss == "hinge":
|
74 |
+
self.disc_loss = hinge_d_loss
|
75 |
+
elif disc_loss == "vanilla":
|
76 |
+
self.disc_loss = vanilla_d_loss
|
77 |
+
else:
|
78 |
+
raise ValueError(f"Unknown GAN loss '{disc_loss}'.")
|
79 |
+
print(f"VQLPIPSWithDiscriminator running with {disc_loss} loss.")
|
80 |
+
self.disc_factor = disc_factor
|
81 |
+
self.discriminator_weight = disc_weight
|
82 |
+
self.disc_conditional = disc_conditional
|
83 |
+
self.n_classes = n_classes
|
84 |
+
|
85 |
+
def calculate_adaptive_weight(self, nll_loss, g_loss, last_layer=None):
|
86 |
+
if last_layer is not None:
|
87 |
+
nll_grads = torch.autograd.grad(nll_loss, last_layer, retain_graph=True)[0]
|
88 |
+
g_grads = torch.autograd.grad(g_loss, last_layer, retain_graph=True)[0]
|
89 |
+
else:
|
90 |
+
nll_grads = torch.autograd.grad(nll_loss, self.last_layer[0], retain_graph=True)[0]
|
91 |
+
g_grads = torch.autograd.grad(g_loss, self.last_layer[0], retain_graph=True)[0]
|
92 |
+
|
93 |
+
d_weight = torch.norm(nll_grads) / (torch.norm(g_grads) + 1e-4)
|
94 |
+
d_weight = torch.clamp(d_weight, 0.0, 1e4).detach()
|
95 |
+
d_weight = d_weight * self.discriminator_weight
|
96 |
+
return d_weight
|
97 |
+
|
98 |
+
def forward(self, codebook_loss, inputs, reconstructions, optimizer_idx,
|
99 |
+
global_step, last_layer=None, cond=None, split="train", predicted_indices=None):
|
100 |
+
if not exists(codebook_loss):
|
101 |
+
codebook_loss = torch.tensor([0.]).to(inputs.device)
|
102 |
+
#rec_loss = torch.abs(inputs.contiguous() - reconstructions.contiguous())
|
103 |
+
rec_loss = self.pixel_loss(inputs.contiguous(), reconstructions.contiguous())
|
104 |
+
if self.perceptual_weight > 0:
|
105 |
+
p_loss = self.perceptual_loss(inputs.contiguous(), reconstructions.contiguous())
|
106 |
+
rec_loss = rec_loss + self.perceptual_weight * p_loss
|
107 |
+
else:
|
108 |
+
p_loss = torch.tensor([0.0])
|
109 |
+
|
110 |
+
nll_loss = rec_loss
|
111 |
+
#nll_loss = torch.sum(nll_loss) / nll_loss.shape[0]
|
112 |
+
nll_loss = torch.mean(nll_loss)
|
113 |
+
|
114 |
+
# now the GAN part
|
115 |
+
if optimizer_idx == 0:
|
116 |
+
# generator update
|
117 |
+
if cond is None:
|
118 |
+
assert not self.disc_conditional
|
119 |
+
logits_fake = self.discriminator(reconstructions.contiguous())
|
120 |
+
else:
|
121 |
+
assert self.disc_conditional
|
122 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous(), cond), dim=1))
|
123 |
+
g_loss = -torch.mean(logits_fake)
|
124 |
+
|
125 |
+
try:
|
126 |
+
d_weight = self.calculate_adaptive_weight(nll_loss, g_loss, last_layer=last_layer)
|
127 |
+
except RuntimeError:
|
128 |
+
assert not self.training
|
129 |
+
d_weight = torch.tensor(0.0)
|
130 |
+
|
131 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
132 |
+
loss = nll_loss + d_weight * disc_factor * g_loss + self.codebook_weight * codebook_loss.mean()
|
133 |
+
|
134 |
+
log = {"{}/total_loss".format(split): loss.clone().detach().mean(),
|
135 |
+
"{}/quant_loss".format(split): codebook_loss.detach().mean(),
|
136 |
+
"{}/nll_loss".format(split): nll_loss.detach().mean(),
|
137 |
+
"{}/rec_loss".format(split): rec_loss.detach().mean(),
|
138 |
+
"{}/p_loss".format(split): p_loss.detach().mean(),
|
139 |
+
"{}/d_weight".format(split): d_weight.detach(),
|
140 |
+
"{}/disc_factor".format(split): torch.tensor(disc_factor),
|
141 |
+
"{}/g_loss".format(split): g_loss.detach().mean(),
|
142 |
+
}
|
143 |
+
if predicted_indices is not None:
|
144 |
+
assert self.n_classes is not None
|
145 |
+
with torch.no_grad():
|
146 |
+
perplexity, cluster_usage = measure_perplexity(predicted_indices, self.n_classes)
|
147 |
+
log[f"{split}/perplexity"] = perplexity
|
148 |
+
log[f"{split}/cluster_usage"] = cluster_usage
|
149 |
+
return loss, log
|
150 |
+
|
151 |
+
if optimizer_idx == 1:
|
152 |
+
# second pass for discriminator update
|
153 |
+
if cond is None:
|
154 |
+
logits_real = self.discriminator(inputs.contiguous().detach())
|
155 |
+
logits_fake = self.discriminator(reconstructions.contiguous().detach())
|
156 |
+
else:
|
157 |
+
logits_real = self.discriminator(torch.cat((inputs.contiguous().detach(), cond), dim=1))
|
158 |
+
logits_fake = self.discriminator(torch.cat((reconstructions.contiguous().detach(), cond), dim=1))
|
159 |
+
|
160 |
+
disc_factor = adopt_weight(self.disc_factor, global_step, threshold=self.discriminator_iter_start)
|
161 |
+
d_loss = disc_factor * self.disc_loss(logits_real, logits_fake)
|
162 |
+
|
163 |
+
log = {"{}/disc_loss".format(split): d_loss.clone().detach().mean(),
|
164 |
+
"{}/logits_real".format(split): logits_real.detach().mean(),
|
165 |
+
"{}/logits_fake".format(split): logits_fake.detach().mean()
|
166 |
+
}
|
167 |
+
return d_loss, log
|