Spaces:
Running
Running
init qa
Browse files- .gitignore +5 -0
- README.md +1 -1
- app.py +198 -56
- config.py +0 -0
- prompt.py +53 -0
- requirements.txt +13 -1
- style.css +598 -0
- utils.py +81 -0
.gitignore
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__/
|
2 |
+
.env
|
3 |
+
.gradio
|
4 |
+
data/
|
5 |
+
faiss_index/
|
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 💬
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 5.0.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
4 |
colorFrom: yellow
|
5 |
colorTo: purple
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.0.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
CHANGED
@@ -1,64 +1,206 @@
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
):
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
""
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
|
|
|
|
|
|
|
|
1 |
+
from langchain.memory import ConversationBufferMemory
|
2 |
+
|
3 |
+
import pandas as pd
|
4 |
import gradio as gr
|
|
|
5 |
|
6 |
+
from langchain.embeddings import OpenAIEmbeddings
|
7 |
+
from langchain.vectorstores import FAISS
|
8 |
+
|
9 |
+
import os
|
10 |
+
|
11 |
+
|
12 |
+
import pandas as pd
|
13 |
+
from langchain.embeddings import OpenAIEmbeddings
|
14 |
+
from langchain.vectorstores import FAISS
|
15 |
+
from langchain.schema import Document
|
16 |
+
import os
|
17 |
+
|
18 |
+
from utils import make_html_source, make_pairs, get_llm, reset_textbox
|
19 |
+
|
20 |
+
from prompt import PROMPT_INTERPRATE_INTENTION, ANSWER_PROMPT
|
21 |
+
|
22 |
+
|
23 |
+
try:
|
24 |
+
from dotenv import load_dotenv
|
25 |
+
load_dotenv()
|
26 |
+
except Exception:
|
27 |
+
pass
|
28 |
+
|
29 |
+
|
30 |
+
# Load your OpenAI API key
|
31 |
+
import os
|
32 |
+
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
33 |
+
assert OPENAI_API_KEY, "Please set your OpenAI API key"
|
34 |
+
|
35 |
+
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
+
new_vector_store = FAISS.load_local(
|
41 |
+
"faiss_index", embeddings, allow_dangerous_deserialization=True
|
42 |
+
)
|
43 |
+
|
44 |
+
retriever = new_vector_store.as_retriever()
|
45 |
+
|
46 |
+
|
47 |
|
48 |
+
llm = get_llm()
|
49 |
|
50 |
+
memory = ConversationBufferMemory(
|
51 |
+
return_messages=True, output_key="answer", input_key="question"
|
52 |
+
)
|
53 |
+
|
54 |
+
def make_qa_chain(
|
55 |
+
|
56 |
+
) :
|
57 |
+
final_inputs = {
|
58 |
+
"context": lambda x: x["context"],
|
59 |
+
"question": lambda x: x["question"],
|
60 |
+
}
|
61 |
+
|
62 |
+
|
63 |
+
|
64 |
+
return final_inputs | ANSWER_PROMPT | llm
|
65 |
+
|
66 |
+
|
67 |
+
def load_documents_meeting(meeting_number):
|
68 |
+
# Step 1: Load the CSV data
|
69 |
+
csv_file_path = "../data/mfls.xlsx"
|
70 |
+
df = pd.read_excel(csv_file_path)
|
71 |
+
|
72 |
+
df["meeting_number"]= df["Meeting"].apply(lambda x: x.split(" ")[0][:-2])
|
73 |
+
df_meeting = df[df["meeting_number"] == meeting_number]
|
74 |
+
def combine_title_and_content(row):
|
75 |
+
return f"{row['Meeting']} {row['Issues']} {row['Content']}"
|
76 |
+
|
77 |
+
df_meeting['combined'] = df_meeting.apply(combine_title_and_content, axis=1)
|
78 |
+
|
79 |
+
# Step 3: Generate embeddings using OpenAI
|
80 |
+
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
|
81 |
+
|
82 |
+
# Generate embeddings for each document
|
83 |
+
documents = [
|
84 |
+
Document(
|
85 |
+
page_content=row['combined'],
|
86 |
+
metadata={
|
87 |
+
"Issues": row['Issues'],
|
88 |
+
"Title": row['Title'],
|
89 |
+
"meeting_number": row["Meeting"].split(" ")[0][:-2],
|
90 |
+
"Agencies": row["Agencies"],
|
91 |
+
"project": row["Projects"],
|
92 |
+
}
|
93 |
+
) for i,row in df_meeting.iterrows()]
|
94 |
+
return documents
|
95 |
+
|
96 |
+
|
97 |
+
async def chat(
|
98 |
+
query: str,
|
99 |
+
history: list = [],
|
100 |
):
|
101 |
+
"""taking a query and a message history, use a pipeline (reformulation, retriever, answering) to yield a tuple of:
|
102 |
+
(messages in gradio format, messages in langchain format, source documents)"""
|
103 |
+
source_string = ""
|
104 |
+
gradio_format = make_pairs([a.content for a in history]) + [(query, "")]
|
105 |
+
qa_chain = make_qa_chain()
|
106 |
+
|
107 |
+
# reset memory
|
108 |
+
memory.clear()
|
109 |
+
for message in history:
|
110 |
+
memory.chat_memory.add_message(message)
|
111 |
+
|
112 |
+
inputs = {"question": query}
|
113 |
+
|
114 |
+
## INTENT
|
115 |
+
intent = await llm.abatch([PROMPT_INTERPRATE_INTENTION.format_prompt(query = query)])
|
116 |
+
intent = intent[0].content
|
117 |
+
print("intent", intent)
|
118 |
+
|
119 |
+
## RETRIEVER
|
120 |
+
if intent.split(" ")[0] == "meeting":
|
121 |
+
meeting_number = intent.split(" ")[-1]
|
122 |
+
sources = load_documents_meeting(meeting_number)
|
123 |
+
else :
|
124 |
+
sources = new_vector_store.search(query, search_type="similarity", k=5)
|
125 |
+
|
126 |
+
source_string = "\n\n".join([make_html_source(doc, i) for i, doc in enumerate(sources, 1)])
|
127 |
+
|
128 |
+
## RAG
|
129 |
+
inputs_rag = {"question": query, "context": sources}
|
130 |
+
|
131 |
+
result = qa_chain.astream_log(inputs_rag)
|
132 |
+
|
133 |
+
reformulated_question_path_id = "/logs/ChatOpenAI/streamed_output_str/-"
|
134 |
+
retriever_path_id = "/logs/VectorStoreRetriever/final_output"
|
135 |
+
final_answer_path_id = "/streamed_output/-"
|
136 |
+
|
137 |
+
async for op in result:
|
138 |
+
op = op.ops[0]
|
139 |
+
# print(op["path"])
|
140 |
+
if op['path'] == reformulated_question_path_id: # reforulated question
|
141 |
+
new_token = op['value'] # str
|
142 |
+
|
143 |
+
elif op['path'] == retriever_path_id: # documents
|
144 |
+
sources = op['value']['documents'] # List[Document]
|
145 |
+
source_string = "\n\n".join([make_html_source(i, doc) for i, doc in enumerate(sources, 1)])
|
146 |
+
|
147 |
+
elif op['path'] == final_answer_path_id: # final answer
|
148 |
+
new_token = op['value'].content # str
|
149 |
+
answer_yet = gradio_format[-1][1]
|
150 |
+
gradio_format[-1] = (query, answer_yet + new_token )
|
151 |
+
|
152 |
+
yield gradio_format, history, source_string
|
153 |
+
|
154 |
+
memory.save_context(inputs, {"answer": gradio_format[-1][1]})
|
155 |
+
yield gradio_format, memory.load_memory_variables({})["history"], source_string
|
156 |
+
|
157 |
+
|
158 |
+
### GRADIO UI
|
159 |
+
|
160 |
+
theme = gr.themes.Soft(
|
161 |
+
primary_hue="sky",
|
162 |
+
font=[gr.themes.GoogleFont("Poppins"), "ui-sans-serif", "system-ui", "sans-serif"],
|
163 |
)
|
164 |
|
165 |
+
demo_name = "UNEP Q&A"
|
166 |
+
|
167 |
+
with gr.Blocks(title=f"{demo_name}", theme=theme, css_paths=os.getcwd()+ "/style.css") as demo:
|
168 |
+
|
169 |
+
gr.Markdown(f"<h1><center>{demo_name}</center></h1>")
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
with gr.Column(scale=2):
|
173 |
+
chatbot = gr.Chatbot(
|
174 |
+
value = [("","Hello ! How can I help you today ?")],
|
175 |
+
elem_id="chatbot",
|
176 |
+
label=f"{demo_name} chatbot",
|
177 |
+
show_label=False
|
178 |
+
)
|
179 |
+
state = gr.State([])
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
ask = gr.Textbox(
|
183 |
+
show_label=False,
|
184 |
+
placeholder="Input your question then press enter",
|
185 |
+
)
|
186 |
+
|
187 |
+
with gr.Column(scale=1, variant="panel"):
|
188 |
+
gr.Markdown("### Sources")
|
189 |
+
sources_textbox = gr.HTML(show_label=False)
|
190 |
+
|
191 |
+
ask.submit(
|
192 |
+
fn=chat,
|
193 |
+
inputs=[
|
194 |
+
ask,
|
195 |
+
state,
|
196 |
+
],
|
197 |
+
outputs=[chatbot, state, sources_textbox],
|
198 |
+
)
|
199 |
+
|
200 |
+
ask.submit(reset_textbox, [], [ask])
|
201 |
|
202 |
+
demo.queue()
|
203 |
+
demo.launch(
|
204 |
+
share=True,
|
205 |
+
debug=True
|
206 |
+
)
|
config.py
ADDED
File without changes
|
prompt.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Prompt configuration.
|
3 |
+
"""
|
4 |
+
from datetime import datetime
|
5 |
+
from langchain.prompts.prompt import PromptTemplate
|
6 |
+
from langchain.prompts import ChatPromptTemplate
|
7 |
+
|
8 |
+
from langchain_core.prompts import ChatPromptTemplate
|
9 |
+
|
10 |
+
interprate_question_sharepoint_template = """
|
11 |
+
whatever is asked, just answer only {{}}"""
|
12 |
+
|
13 |
+
PROMPT_INTERPRATE_INTENTION_SHAREPOINT = ChatPromptTemplate.from_template(
|
14 |
+
interprate_question_sharepoint_template
|
15 |
+
)
|
16 |
+
|
17 |
+
interprate_question_template = (
|
18 |
+
"""You are an assistant that have to identify the object of a question.
|
19 |
+
A user asks a question about meeting decisions.
|
20 |
+
If the question is about a particular meeting, identified by a meeting number, answer only 'meeting <meeting number>'.
|
21 |
+
Otherwise answer only 'other'.
|
22 |
+
|
23 |
+
Example:
|
24 |
+
Q: What decision was taken at meeting 123th?
|
25 |
+
R: meeting 123
|
26 |
+
Q: Give me an example of a decision that applied a penalty to a country?
|
27 |
+
R: autre
|
28 |
+
|
29 |
+
"""
|
30 |
+
"La question est la suivante: {query}."
|
31 |
+
)
|
32 |
+
|
33 |
+
PROMPT_INTERPRATE_INTENTION = ChatPromptTemplate.from_template(
|
34 |
+
interprate_question_template
|
35 |
+
)
|
36 |
+
|
37 |
+
current_date = datetime.now().strftime('%d/%m/%Y')
|
38 |
+
company_name = "UNEP" # to change
|
39 |
+
|
40 |
+
answering_template = (
|
41 |
+
f"You are an AI Assistant by Ekimetrics for {company_name}. "
|
42 |
+
f"Your task is to help {company_name} employees. "
|
43 |
+
"You will be given a question and extracted parts of documents."
|
44 |
+
"Provide a clear and structured answer based on the context provided. "
|
45 |
+
"When relevant, use bullet points and lists to structure your answers. "
|
46 |
+
"Whenever you use information from a document, reference it at the end of the sentence (ex: [doc 2]). "
|
47 |
+
"You don't have to use all documents, only if it makes sense in the conversation. "
|
48 |
+
"If no relevant information to answer the question is present in the documents, "
|
49 |
+
"just say you don't have enough information to answer.\n\n"
|
50 |
+
"{context}\n\n"
|
51 |
+
"Question: {question}"
|
52 |
+
)
|
53 |
+
ANSWER_PROMPT = ChatPromptTemplate.from_template(answering_template)
|
requirements.txt
CHANGED
@@ -1 +1,13 @@
|
|
1 |
-
huggingface_hub==0.25.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub==0.25.2
|
2 |
+
# gradio==5.0.2
|
3 |
+
# python-dotenv==1.0.0
|
4 |
+
# langchain==0.2.1
|
5 |
+
# langchain-community==0.2
|
6 |
+
# langchain_openai==0.1.7
|
7 |
+
# faiss-cpu==1.9.0
|
8 |
+
python-dotenv==1.0.1
|
9 |
+
gradio==5.0.2
|
10 |
+
langchain==0.3.3
|
11 |
+
langchain-community==0.3.2
|
12 |
+
langchain-openai==0.2.2
|
13 |
+
faiss-cpu==1.9.0
|
style.css
ADDED
@@ -0,0 +1,598 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
/* :root {
|
3 |
+
--user-image: url('https://ih1.redbubble.net/image.4776899543.6215/st,small,507x507-pad,600x600,f8f8f8.jpg');
|
4 |
+
} */
|
5 |
+
.avatar-container.svelte-1x5p6hu:not(.thumbnail-item) img {
|
6 |
+
width: 100%;
|
7 |
+
height: 100%;
|
8 |
+
object-fit: cover;
|
9 |
+
border-radius: 50%;
|
10 |
+
padding: 0px;
|
11 |
+
margin: 0px;
|
12 |
+
}
|
13 |
+
|
14 |
+
.gradio-container {
|
15 |
+
width: 100%!important;
|
16 |
+
max-width: 100% !important;
|
17 |
+
}
|
18 |
+
|
19 |
+
/* fix for huggingface infinite growth*/
|
20 |
+
main.flex.flex-1.flex-col {
|
21 |
+
max-height: 95vh !important;
|
22 |
+
}
|
23 |
+
|
24 |
+
button#show-figures{
|
25 |
+
/* Base styles */
|
26 |
+
background-color: #f5f5f5;
|
27 |
+
border: 1px solid #e0e0e0;
|
28 |
+
border-radius: 4px;
|
29 |
+
color: #333333;
|
30 |
+
cursor: pointer;
|
31 |
+
width: 100%;
|
32 |
+
text-align: center;
|
33 |
+
}
|
34 |
+
|
35 |
+
.avatar-container.svelte-1x5p6hu:not(.thumbnail-item) img {
|
36 |
+
width: 100%;
|
37 |
+
height: 100%;
|
38 |
+
object-fit: cover;
|
39 |
+
border-radius: 50%;
|
40 |
+
padding: 0px;
|
41 |
+
margin: 0px;
|
42 |
+
}
|
43 |
+
|
44 |
+
.warning-box {
|
45 |
+
background-color: #fff3cd;
|
46 |
+
border: 1px solid #ffeeba;
|
47 |
+
border-radius: 4px;
|
48 |
+
padding: 15px 20px;
|
49 |
+
font-size: 14px;
|
50 |
+
color: #856404;
|
51 |
+
display: inline-block;
|
52 |
+
margin-bottom: 15px;
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
.tip-box {
|
57 |
+
background-color: #f0f9ff;
|
58 |
+
border: 1px solid #80d4fa;
|
59 |
+
border-radius: 4px;
|
60 |
+
margin-top:20px;
|
61 |
+
padding: 15px 20px;
|
62 |
+
font-size: 14px;
|
63 |
+
display: inline-block;
|
64 |
+
margin-bottom: 15px;
|
65 |
+
width: auto;
|
66 |
+
color:black !important;
|
67 |
+
}
|
68 |
+
|
69 |
+
body.dark .warning-box * {
|
70 |
+
color:black !important;
|
71 |
+
}
|
72 |
+
|
73 |
+
|
74 |
+
body.dark .tip-box * {
|
75 |
+
color:black !important;
|
76 |
+
}
|
77 |
+
|
78 |
+
|
79 |
+
.tip-box-title {
|
80 |
+
font-weight: bold;
|
81 |
+
font-size: 14px;
|
82 |
+
margin-bottom: 5px;
|
83 |
+
}
|
84 |
+
|
85 |
+
.light-bulb {
|
86 |
+
display: inline;
|
87 |
+
margin-right: 5px;
|
88 |
+
}
|
89 |
+
|
90 |
+
.gr-box {border-color: #d6c37c}
|
91 |
+
|
92 |
+
#hidden-message{
|
93 |
+
display:none;
|
94 |
+
}
|
95 |
+
|
96 |
+
.message{
|
97 |
+
font-size:14px !important;
|
98 |
+
|
99 |
+
}
|
100 |
+
.card-content img {
|
101 |
+
display: block;
|
102 |
+
margin: auto;
|
103 |
+
max-width: 100%; /* Ensures the image is responsive */
|
104 |
+
height: auto;
|
105 |
+
}
|
106 |
+
|
107 |
+
a {
|
108 |
+
text-decoration: none;
|
109 |
+
color: inherit;
|
110 |
+
}
|
111 |
+
|
112 |
+
.doc-ref sup{
|
113 |
+
color:#dc2626!important;
|
114 |
+
/* margin-right:1px; */
|
115 |
+
}
|
116 |
+
|
117 |
+
|
118 |
+
.card {
|
119 |
+
background-color: white;
|
120 |
+
border-radius: 10px;
|
121 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
122 |
+
overflow: hidden;
|
123 |
+
display: flex;
|
124 |
+
flex-direction: column;
|
125 |
+
margin:20px;
|
126 |
+
}
|
127 |
+
|
128 |
+
.card-content {
|
129 |
+
padding: 20px;
|
130 |
+
}
|
131 |
+
|
132 |
+
.card-content h2 {
|
133 |
+
font-size: 14px !important;
|
134 |
+
font-weight: bold;
|
135 |
+
margin-bottom: 10px;
|
136 |
+
margin-top:0px !important;
|
137 |
+
color:#dc2626!important;;
|
138 |
+
}
|
139 |
+
|
140 |
+
.card-content p {
|
141 |
+
font-size: 12px;
|
142 |
+
margin-bottom: 0;
|
143 |
+
}
|
144 |
+
|
145 |
+
.card-footer {
|
146 |
+
background-color: #f4f4f4;
|
147 |
+
font-size: 10px;
|
148 |
+
padding: 10px;
|
149 |
+
display: flex;
|
150 |
+
justify-content: space-between;
|
151 |
+
align-items: center;
|
152 |
+
}
|
153 |
+
|
154 |
+
.card-footer span {
|
155 |
+
flex-grow: 1;
|
156 |
+
text-align: left;
|
157 |
+
color: #999 !important;
|
158 |
+
}
|
159 |
+
|
160 |
+
.pdf-link {
|
161 |
+
display: inline-flex;
|
162 |
+
align-items: center;
|
163 |
+
margin-left: auto;
|
164 |
+
text-decoration: none!important;
|
165 |
+
font-size: 14px;
|
166 |
+
}
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
.message.user{
|
171 |
+
/* background-color:#7494b0 !important; */
|
172 |
+
border:none;
|
173 |
+
/* color:white!important; */
|
174 |
+
}
|
175 |
+
|
176 |
+
.message.bot{
|
177 |
+
/* background-color:#f2f2f7 !important; */
|
178 |
+
border:none;
|
179 |
+
}
|
180 |
+
|
181 |
+
/* .gallery-item > div:hover{
|
182 |
+
background-color:#7494b0 !important;
|
183 |
+
color:white!important;
|
184 |
+
}
|
185 |
+
|
186 |
+
.gallery-item:hover{
|
187 |
+
border:#7494b0 !important;
|
188 |
+
}
|
189 |
+
|
190 |
+
.gallery-item > div{
|
191 |
+
background-color:white !important;
|
192 |
+
color:#577b9b!important;
|
193 |
+
}
|
194 |
+
|
195 |
+
.label{
|
196 |
+
color:#577b9b!important;
|
197 |
+
} */
|
198 |
+
|
199 |
+
/* .paginate{
|
200 |
+
color:#577b9b!important;
|
201 |
+
} */
|
202 |
+
|
203 |
+
|
204 |
+
|
205 |
+
/* span[data-testid="block-info"]{
|
206 |
+
background:none !important;
|
207 |
+
color:#577b9b;
|
208 |
+
} */
|
209 |
+
|
210 |
+
/* Pseudo-element for the circularly cropped picture */
|
211 |
+
/* .message.bot::before {
|
212 |
+
content: '';
|
213 |
+
position: absolute;
|
214 |
+
top: -10px;
|
215 |
+
left: -10px;
|
216 |
+
width: 30px;
|
217 |
+
height: 30px;
|
218 |
+
background-image: var(--user-image);
|
219 |
+
background-size: cover;
|
220 |
+
background-position: center;
|
221 |
+
border-radius: 50%;
|
222 |
+
z-index: 10;
|
223 |
+
}
|
224 |
+
*/
|
225 |
+
|
226 |
+
label.selected{
|
227 |
+
background:none !important;
|
228 |
+
}
|
229 |
+
|
230 |
+
#submit-button{
|
231 |
+
padding:0px !important;
|
232 |
+
}
|
233 |
+
|
234 |
+
@media screen and (min-width: 1024px) {
|
235 |
+
.gradio-container {
|
236 |
+
max-height: calc(100vh - 190px) !important;
|
237 |
+
overflow: hidden;
|
238 |
+
}
|
239 |
+
/* div#chatbot{
|
240 |
+
height:calc(100vh - 170px) !important;
|
241 |
+
max-height:calc(100vh - 170px) !important;
|
242 |
+
|
243 |
+
} */
|
244 |
+
|
245 |
+
div#tab-examples{
|
246 |
+
height:calc(100vh - 190px) !important;
|
247 |
+
overflow-y: scroll !important;
|
248 |
+
/* overflow-y: auto; */
|
249 |
+
}
|
250 |
+
|
251 |
+
div#sources-textbox{
|
252 |
+
height:calc(100vh - 190px) !important;
|
253 |
+
overflow-y: scroll !important;
|
254 |
+
/* overflow-y: auto !important; */
|
255 |
+
}
|
256 |
+
|
257 |
+
div#sources-figures{
|
258 |
+
height:calc(100vh - 300px) !important;
|
259 |
+
max-height: 90vh !important;
|
260 |
+
overflow-y: scroll !important;
|
261 |
+
}
|
262 |
+
|
263 |
+
div#tab-config{
|
264 |
+
height:calc(100vh - 190px) !important;
|
265 |
+
overflow-y: scroll !important;
|
266 |
+
/* overflow-y: auto !important; */
|
267 |
+
}
|
268 |
+
|
269 |
+
/* Force container to respect height limits */
|
270 |
+
.main-component{
|
271 |
+
contain: size layout;
|
272 |
+
overflow: hidden;
|
273 |
+
}
|
274 |
+
|
275 |
+
|
276 |
+
div#chatbot-row{
|
277 |
+
max-height:calc(100vh - 90px) !important;
|
278 |
+
}
|
279 |
+
/*
|
280 |
+
|
281 |
+
|
282 |
+
.max-height{
|
283 |
+
height:calc(100vh - 90px) !important;
|
284 |
+
max-height:calc(100vh - 90px) !important;
|
285 |
+
overflow-y: auto;
|
286 |
+
}
|
287 |
+
*/
|
288 |
+
|
289 |
+
}
|
290 |
+
|
291 |
+
footer {
|
292 |
+
visibility: hidden;
|
293 |
+
display:none !important;
|
294 |
+
}
|
295 |
+
|
296 |
+
|
297 |
+
@media screen and (max-width: 767px) {
|
298 |
+
/* Your mobile-specific styles go here */
|
299 |
+
|
300 |
+
div#chatbot{
|
301 |
+
height:500px !important;
|
302 |
+
}
|
303 |
+
|
304 |
+
#submit-button{
|
305 |
+
padding:0px !important;
|
306 |
+
min-width: 80px;
|
307 |
+
}
|
308 |
+
|
309 |
+
/* This will hide all list items */
|
310 |
+
div.tab-nav button {
|
311 |
+
display: none !important;
|
312 |
+
}
|
313 |
+
|
314 |
+
/* This will show only the first list item */
|
315 |
+
div.tab-nav button:first-child {
|
316 |
+
display: block !important;
|
317 |
+
}
|
318 |
+
|
319 |
+
/* This will show only the first list item */
|
320 |
+
div.tab-nav button:nth-child(2) {
|
321 |
+
display: block !important;
|
322 |
+
}
|
323 |
+
|
324 |
+
#right-panel button{
|
325 |
+
display: block !important;
|
326 |
+
}
|
327 |
+
|
328 |
+
/* ... add other mobile-specific styles ... */
|
329 |
+
}
|
330 |
+
|
331 |
+
@media (prefers-color-scheme: dark) {
|
332 |
+
.card{
|
333 |
+
background-color: #374151;
|
334 |
+
}
|
335 |
+
.card-image > .card-content{
|
336 |
+
background-color: rgb(55, 65, 81) !important;
|
337 |
+
}
|
338 |
+
|
339 |
+
.card-footer {
|
340 |
+
background-color: #404652;
|
341 |
+
}
|
342 |
+
|
343 |
+
.container > .wrap{
|
344 |
+
background-color: #374151 !important;
|
345 |
+
color:white !important;
|
346 |
+
}
|
347 |
+
.card-content h2{
|
348 |
+
color:#e7754f !important;
|
349 |
+
}
|
350 |
+
.doc-ref sup{
|
351 |
+
color:rgb(235 109 35)!important;
|
352 |
+
/* margin-right:1px; */
|
353 |
+
}
|
354 |
+
.card-footer span {
|
355 |
+
color:white !important;
|
356 |
+
}
|
357 |
+
|
358 |
+
}
|
359 |
+
|
360 |
+
|
361 |
+
.doc-ref{
|
362 |
+
color:#dc2626!important;
|
363 |
+
margin-right:1px;
|
364 |
+
}
|
365 |
+
|
366 |
+
.tabitem{
|
367 |
+
border:none !important;
|
368 |
+
}
|
369 |
+
|
370 |
+
.other-tabs > div{
|
371 |
+
padding-left:40px;
|
372 |
+
padding-right:40px;
|
373 |
+
padding-top:10px;
|
374 |
+
}
|
375 |
+
|
376 |
+
.gallery-item > div{
|
377 |
+
white-space: normal !important; /* Allow the text to wrap */
|
378 |
+
word-break: break-word !important; /* Break words to prevent overflow */
|
379 |
+
overflow-wrap: break-word !important; /* Break long words if necessary */
|
380 |
+
}
|
381 |
+
|
382 |
+
span.chatbot > p > img{
|
383 |
+
margin-top:40px !important;
|
384 |
+
max-height: none !important;
|
385 |
+
max-width: 80% !important;
|
386 |
+
border-radius:0px !important;
|
387 |
+
}
|
388 |
+
|
389 |
+
|
390 |
+
.chatbot-caption{
|
391 |
+
font-size:11px;
|
392 |
+
font-style:italic;
|
393 |
+
color:#508094;
|
394 |
+
}
|
395 |
+
|
396 |
+
.ai-generated{
|
397 |
+
font-size:11px!important;
|
398 |
+
font-style:italic;
|
399 |
+
color:#73b8d4 !important;
|
400 |
+
}
|
401 |
+
|
402 |
+
.card-image > .card-content{
|
403 |
+
background-color:#f1f7fa;
|
404 |
+
}
|
405 |
+
|
406 |
+
|
407 |
+
|
408 |
+
.tab-nav > button.selected{
|
409 |
+
color:#4b8ec3;
|
410 |
+
font-weight:bold;
|
411 |
+
border:none;
|
412 |
+
}
|
413 |
+
|
414 |
+
.tab-nav{
|
415 |
+
border:none !important;
|
416 |
+
}
|
417 |
+
|
418 |
+
#input-textbox > label > textarea{
|
419 |
+
border-radius:40px;
|
420 |
+
padding-left:30px;
|
421 |
+
resize:none;
|
422 |
+
}
|
423 |
+
|
424 |
+
#input-message > div{
|
425 |
+
border:none;
|
426 |
+
}
|
427 |
+
|
428 |
+
#dropdown-samples{
|
429 |
+
/*! border:none !important; */
|
430 |
+
/*! border-width:0px !important; */
|
431 |
+
background:none !important;
|
432 |
+
|
433 |
+
}
|
434 |
+
|
435 |
+
#dropdown-samples > .container > .wrap{
|
436 |
+
background-color:white;
|
437 |
+
}
|
438 |
+
|
439 |
+
|
440 |
+
#tab-examples > div > .form{
|
441 |
+
border:none;
|
442 |
+
background:none !important;
|
443 |
+
}
|
444 |
+
|
445 |
+
.a-doc-ref{
|
446 |
+
text-decoration: none !important;
|
447 |
+
}
|
448 |
+
|
449 |
+
|
450 |
+
.dropdown {
|
451 |
+
position: relative;
|
452 |
+
display:inline-block;
|
453 |
+
margin-bottom: 10px;
|
454 |
+
}
|
455 |
+
|
456 |
+
.dropdown-toggle {
|
457 |
+
background-color: #f2f2f2;
|
458 |
+
color: black;
|
459 |
+
padding: 10px;
|
460 |
+
font-size: 16px;
|
461 |
+
cursor: pointer;
|
462 |
+
display: block;
|
463 |
+
width: 400px; /* Adjust width as needed */
|
464 |
+
position: relative;
|
465 |
+
display: flex;
|
466 |
+
align-items: center; /* Vertically center the contents */
|
467 |
+
justify-content: left;
|
468 |
+
}
|
469 |
+
|
470 |
+
.dropdown-toggle .caret {
|
471 |
+
content: "";
|
472 |
+
position: absolute;
|
473 |
+
right: 10px;
|
474 |
+
top: 50%;
|
475 |
+
border-left: 5px solid transparent;
|
476 |
+
border-right: 5px solid transparent;
|
477 |
+
border-top: 5px solid black;
|
478 |
+
transform: translateY(-50%);
|
479 |
+
}
|
480 |
+
|
481 |
+
input[type="checkbox"] {
|
482 |
+
display: none !important;
|
483 |
+
}
|
484 |
+
|
485 |
+
input[type="checkbox"]:checked + .dropdown-content {
|
486 |
+
display: block;
|
487 |
+
}
|
488 |
+
|
489 |
+
.dropdown-content {
|
490 |
+
display: none;
|
491 |
+
position: absolute;
|
492 |
+
background-color: #f9f9f9;
|
493 |
+
min-width: 300px;
|
494 |
+
box-shadow: 0 8px 16px 0 rgba(0,0,0,0.2);
|
495 |
+
z-index: 1;
|
496 |
+
padding: 12px;
|
497 |
+
border: 1px solid #ccc;
|
498 |
+
}
|
499 |
+
|
500 |
+
input[type="checkbox"]:checked + .dropdown-toggle + .dropdown-content {
|
501 |
+
display: block;
|
502 |
+
}
|
503 |
+
|
504 |
+
input[type="checkbox"]:checked + .dropdown-toggle .caret {
|
505 |
+
border-top: 0;
|
506 |
+
border-bottom: 5px solid black;
|
507 |
+
}
|
508 |
+
|
509 |
+
.loader {
|
510 |
+
border: 1px solid #d0d0d0 !important; /* Light grey background */
|
511 |
+
border-top: 1px solid #db3434 !important; /* Blue color */
|
512 |
+
border-right: 1px solid #3498db !important; /* Blue color */
|
513 |
+
border-radius: 50%;
|
514 |
+
width: 20px;
|
515 |
+
height: 20px;
|
516 |
+
animation: spin 2s linear infinite;
|
517 |
+
display:inline-block;
|
518 |
+
margin-right:10px !important;
|
519 |
+
}
|
520 |
+
|
521 |
+
.checkmark{
|
522 |
+
color:green !important;
|
523 |
+
font-size:18px;
|
524 |
+
margin-right:10px !important;
|
525 |
+
}
|
526 |
+
|
527 |
+
@keyframes spin {
|
528 |
+
0% { transform: rotate(0deg); }
|
529 |
+
100% { transform: rotate(360deg); }
|
530 |
+
}
|
531 |
+
|
532 |
+
|
533 |
+
.relevancy-score{
|
534 |
+
margin-top:10px !important;
|
535 |
+
font-size:10px !important;
|
536 |
+
font-style:italic;
|
537 |
+
}
|
538 |
+
|
539 |
+
.score-green{
|
540 |
+
color:green !important;
|
541 |
+
}
|
542 |
+
|
543 |
+
.score-orange{
|
544 |
+
color:orange !important;
|
545 |
+
}
|
546 |
+
|
547 |
+
.score-orange{
|
548 |
+
color:red !important;
|
549 |
+
}
|
550 |
+
|
551 |
+
/* Additional style for scrollable tab content */
|
552 |
+
div#tab-recommended_content {
|
553 |
+
overflow-y: auto; /* Enable vertical scrolling */
|
554 |
+
max-height: 80vh; /* Adjust height as needed */
|
555 |
+
}
|
556 |
+
|
557 |
+
/* Mobile specific adjustments */
|
558 |
+
@media screen and (max-width: 767px) {
|
559 |
+
div#tab-recommended_content {
|
560 |
+
max-height: 50vh; /* Reduce height for smaller screens */
|
561 |
+
overflow-y: auto;
|
562 |
+
}
|
563 |
+
}
|
564 |
+
|
565 |
+
/* Additional style for scrollable tab content */
|
566 |
+
div#tab-saved-graphs {
|
567 |
+
overflow-y: auto; /* Enable vertical scrolling */
|
568 |
+
max-height: 80vh; /* Adjust height as needed */
|
569 |
+
}
|
570 |
+
|
571 |
+
/* Mobile specific adjustments */
|
572 |
+
@media screen and (max-width: 767px) {
|
573 |
+
div#tab-saved-graphs {
|
574 |
+
max-height: 50vh; /* Reduce height for smaller screens */
|
575 |
+
overflow-y: auto;
|
576 |
+
}
|
577 |
+
}
|
578 |
+
.message-buttons-left.panel.message-buttons.with-avatar {
|
579 |
+
display: none;
|
580 |
+
}
|
581 |
+
.score-red{
|
582 |
+
color:red !important;
|
583 |
+
}
|
584 |
+
.message-buttons-left.panel.message-buttons.with-avatar {
|
585 |
+
display: none;
|
586 |
+
}
|
587 |
+
|
588 |
+
/* Specific fixes for Hugging Face Space iframe */
|
589 |
+
.h-full {
|
590 |
+
height: auto !important;
|
591 |
+
min-height: 0 !important;
|
592 |
+
}
|
593 |
+
|
594 |
+
.space-content {
|
595 |
+
height: auto !important;
|
596 |
+
max-height: 100vh !important;
|
597 |
+
overflow: hidden;
|
598 |
+
}
|
utils.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from langchain_openai import ChatOpenAI
|
2 |
+
from langchain.prompts.prompt import PromptTemplate
|
3 |
+
from typing import Tuple, List
|
4 |
+
from langchain.schema import format_document
|
5 |
+
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
from langchain.chat_models import ChatOpenAI
|
10 |
+
import os
|
11 |
+
from langchain_openai import ChatOpenAI
|
12 |
+
import os
|
13 |
+
|
14 |
+
DEFAULT_DOCUMENT_PROMPT = PromptTemplate.from_template(template="{page_content}")
|
15 |
+
|
16 |
+
|
17 |
+
def make_pairs(lst):
|
18 |
+
"""from a list of even lenght, make tupple pairs"""
|
19 |
+
return [(lst[i], lst[i + 1]) for i in range(0, len(lst), 2)]
|
20 |
+
|
21 |
+
def reset_textbox():
|
22 |
+
return gr.update(value="")
|
23 |
+
|
24 |
+
def _combine_documents(
|
25 |
+
docs, document_prompt=DEFAULT_DOCUMENT_PROMPT, document_separator="\n\n"
|
26 |
+
):
|
27 |
+
doc_strings = [f"Document {i}: \n'''\n{format_document(doc, document_prompt)}\n'''" for i, doc in enumerate(docs, 1)]
|
28 |
+
return document_separator.join(doc_strings)
|
29 |
+
|
30 |
+
|
31 |
+
def _format_chat_history(chat_history: List[Tuple]) -> str:
|
32 |
+
buffer = ""
|
33 |
+
for dialogue_turn in chat_history:
|
34 |
+
human = "Human: " + dialogue_turn[0]
|
35 |
+
ai = "Assistant: " + dialogue_turn[1]
|
36 |
+
buffer += "\n" + "\n".join([human, ai])
|
37 |
+
return buffer
|
38 |
+
|
39 |
+
def _format_chat_history(chat_history: List[Tuple]) -> str:
|
40 |
+
turn = 1
|
41 |
+
buffer = []
|
42 |
+
for dialogue in chat_history:
|
43 |
+
buffer.append(("Human: " if turn else "Assistant: ") + dialogue.content)
|
44 |
+
turn ^= 1
|
45 |
+
return "\n".join(buffer) + "\n"
|
46 |
+
|
47 |
+
def get_llm(model="gpt-4o-mini",max_tokens=1024, temperature=0.0, streaming=True,timeout=30, **kwargs):
|
48 |
+
|
49 |
+
llm = ChatOpenAI(
|
50 |
+
model=model,
|
51 |
+
api_key=os.environ.get("OPENAI_API_KEY", None),
|
52 |
+
max_tokens = max_tokens,
|
53 |
+
streaming = streaming,
|
54 |
+
temperature=temperature,
|
55 |
+
timeout = timeout,
|
56 |
+
**kwargs,
|
57 |
+
)
|
58 |
+
|
59 |
+
return llm
|
60 |
+
|
61 |
+
|
62 |
+
|
63 |
+
def make_html_source(source,i):
|
64 |
+
meta = source.metadata
|
65 |
+
# content = source.page_content.split(":",1)[1].strip()
|
66 |
+
content = source.page_content.strip()
|
67 |
+
|
68 |
+
|
69 |
+
card = f"""
|
70 |
+
<div class="card" id="doc{i}">
|
71 |
+
<div class="card-content">
|
72 |
+
<h2>Document {i} - Meeting {meta["meeting_number"]} - title {meta['Title']} - Issues {meta['Issues']}</h2>
|
73 |
+
<p>{content}</p>
|
74 |
+
</div>
|
75 |
+
|
76 |
+
</div>
|
77 |
+
"""
|
78 |
+
return card
|
79 |
+
|
80 |
+
|
81 |
+
|