timmy0079 commited on
Commit
5a41ba5
1 Parent(s): 2d1e904

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -93
app.py CHANGED
@@ -1,110 +1,30 @@
1
  import gradio as gr
2
 
 
 
 
3
  from matplotlib import gridspec
4
  import matplotlib.pyplot as plt
5
  import numpy as np
6
- from PIL import Image
7
  import tensorflow as tf
8
- from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
-
10
- feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
- "mattmdjaga/segformer_b2_clothes"
12
- )
13
- model = TFSegformerForSemanticSegmentation.from_pretrained(
14
- "mattmdjaga/segformer_b2_clothes"
15
- )
16
-
17
- def ade_palette():
18
- """ADE20K palette that maps each class to RGB values."""
19
- return [
20
- [255, 255, 255],
21
- [255, 255, 0],
22
- [255, 0, 0],
23
- [0, 255, 255],
24
- [255, 0, 255],
25
- [0, 0, 255],
26
- [0, 255, 0],
27
- [255, 255, 128],
28
- [255, 128, 255],
29
- [128, 255, 255],
30
- [0, 0, 128],
31
- [0, 128, 0],
32
- [128, 0, 0],
33
- [128, 255, 128],
34
- [255, 255, 128],
35
- [128, 255, 255],
36
- [128, 0, 255],
37
- [0, 255, 128],
38
- ]
39
-
40
- labels_list = []
41
-
42
- with open(r'labels.txt', 'r') as fp:
43
- for line in fp:
44
- labels_list.append(line[:-1])
45
-
46
- colormap = np.asarray(ade_palette())
47
-
48
- def label_to_color_image(label):
49
- if label.ndim != 2:
50
- raise ValueError("Expect 2-D input label")
51
-
52
- if np.max(label) >= len(colormap):
53
- raise ValueError("label value too large.")
54
- return colormap[label]
55
 
56
- def draw_plot(pred_img, seg):
57
- fig = plt.figure(figsize=(20, 15))
58
 
59
- grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
60
-
61
- plt.subplot(grid_spec[0])
62
- plt.imshow(pred_img)
63
- plt.axis('off')
64
- LABEL_NAMES = np.asarray(labels_list)
65
- FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
66
- FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
67
-
68
- unique_labels = np.unique(seg.numpy().astype("uint8"))
69
- ax = plt.subplot(grid_spec[1])
70
- plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
71
- ax.yaxis.tick_right()
72
- plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
73
- plt.xticks([], [])
74
- ax.tick_params(width=0.0, labelsize=25)
75
- return fig
76
-
77
- def sepia(input_img):
78
- input_img = Image.fromarray(input_img)
79
-
80
- inputs = feature_extractor(images=input_img, return_tensors="tf")
81
  outputs = model(**inputs)
 
82
  logits = outputs.logits
83
 
84
- logits = tf.transpose(logits, [0, 2, 3, 1])
85
- logits = tf.image.resize(
86
- logits, input_img.size[::-1]
87
- ) # We reverse the shape of `image` because `image.size` returns width and height.
88
- seg = tf.math.argmax(logits, axis=-1)[0]
89
-
90
- color_seg = np.zeros(
91
- (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
92
- ) # height, width, 3
93
- for label, color in enumerate(colormap):
94
- color_seg[seg.numpy() == label, :] = color
95
-
96
- # Show image + mask
97
- pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
98
- pred_img = pred_img.astype(np.uint8)
99
-
100
- fig = draw_plot(pred_img, seg)
101
- return fig
102
-
103
  demo = gr.Interface(fn=sepia,
104
  inputs=gr.Image(shape=(400, 600)),
105
  outputs=['plot'],
106
- examples=["person-1.jpg", "person-2.jpg", "person-3.jpg", "person-4.jpg", "person-5.jpg"],
107
  allow_flagging='never')
108
 
109
 
110
- demo.launch()
 
1
  import gradio as gr
2
 
3
+ from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
4
+ from PIL import Image
5
+ import requests
6
  from matplotlib import gridspec
7
  import matplotlib.pyplot as plt
8
  import numpy as np
 
9
  import tensorflow as tf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
 
11
 
12
+ def sepia():
13
+ feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b0-finetuned-ade-512-512")
14
+ model = SegformerForSemanticSegmentation.from_pretrained("segments-tobias/segformer-b0-finetuned-segments-sidewalk")
15
+ url = "https://segmentsai-prod.s3.eu-west-2.amazonaws.com/assets/admin-tobias/439f6843-80c5-47ce-9b17-0b2a1d54dbeb.jpg"
16
+ image = Image.open(requests.get(url, stream=True).raw)
17
+
18
+ inputs = feature_extractor(images=image, return_tensors="pt")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  outputs = model(**inputs)
20
+
21
  logits = outputs.logits
22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  demo = gr.Interface(fn=sepia,
24
  inputs=gr.Image(shape=(400, 600)),
25
  outputs=['plot'],
26
+ examples=[],
27
  allow_flagging='never')
28
 
29
 
30
+ demo.launch()