import gradio as gr from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from PIL import Image import tensorflow as tf from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation feature_extractor = SegformerFeatureExtractor.from_pretrained( "nielsr/segformer-b0-finetuned-segments-sidewalk", from_pt=True ) model = TFSegformerForSemanticSegmentation.from_pretrained( "nielsr/segformer-b0-finetuned-segments-sidewalk", from_pt=True ) def ade_palette(): """ADE20K palette that maps each class to RGB values.""" return [ [204, 87, 90], [112, 185, 212], [45, 189, 106], [234, 123, 67], [78, 56, 123], [210, 32, 89], [90, 180, 56], [155, 102, 200], [33, 147, 176], [255, 183, 76], [67, 123, 89], [190, 60, 45], [134, 112, 200], [56, 45, 189], [200, 56, 123], [87, 92, 204], [120, 56, 123], [45, 78, 123], [156, 200, 56], [32, 90, 210], [56, 123, 67], [180, 56, 123], [123, 67, 45], [45, 134, 200], [67, 56, 123], [78, 123, 67], [32, 210, 90], [45, 56, 189], [123, 56, 123], [56, 156, 200], [189, 56, 45], [112, 200, 56], [56, 123, 45], [200, 32, 90], [123, 45, 78], ] labels_list = [] with open(r'labels.txt', 'r') as fp: for line in fp: labels_list.append(line[:-1]) colormap = np.asarray(ade_palette()) def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("label value too large.") return colormap[label] def draw_plot(pred_img, seg): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg.numpy().astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=25) return fig def sepia(input_img): input_img = Image.fromarray(input_img) inputs = feature_extractor(images=input_img, return_tensors="tf") outputs = model(**inputs) logits = outputs.logits logits = tf.transpose(logits, [0, 2, 3, 1]) logits = tf.image.resize( logits, input_img.size[::-1] ) # We reverse the shape of `image` because `image.size` returns width and height. seg = tf.math.argmax(logits, axis=-1)[0] color_seg = np.zeros( (seg.shape[0], seg.shape[1], 3), dtype=np.uint8 ) # height, width, 3 for label, color in enumerate(colormap): color_seg[seg.numpy() == label, :] = color # Show image + mask pred_img = np.array(input_img) * 0.5 + color_seg * 0.5 pred_img = pred_img.astype(np.uint8) fig = draw_plot(pred_img, seg) return fig demo = gr.Interface(fn=sepia, title="Machine_learning_Sidewalk_Segmentation‍️", description="Sidewalk Image Segmentation 201912103 이서정", inputs=gr.Image(), outputs=['plot'], article="경기대학교 머신러닝 과제입니다.", examples=["Sidewalk_1.jpg", "Sidewalk_2.jpg", "Sidewalk_3.jpg"], allow_flagging='never', css=".gradio-container {background-color: #EEEEEE}", theme="gradio/monochrome", live=True) demo.launch()