Spaces:
Runtime error
Runtime error
Thomas J. Trebat
commited on
Commit
·
8713bc4
1
Parent(s):
92e317c
Made labels global
Browse files
app.py
CHANGED
@@ -8,17 +8,14 @@ from timm.data.transforms_factory import create_transform
|
|
8 |
|
9 |
|
10 |
class ImageClassifier(object):
|
11 |
-
def __init__(self,
|
12 |
-
self.model =
|
13 |
-
|
14 |
-
pretrained=True
|
15 |
-
).eval()
|
16 |
|
17 |
def get_top_5_predictions(self, image):
|
18 |
values, indices = torch.topk(self.get_output_probabilities(image), 5)
|
19 |
-
labels = self.get_labels()
|
20 |
return [
|
21 |
-
{'label': labels[i], 'score': v.item()}
|
22 |
for i, v in zip(indices, values)
|
23 |
]
|
24 |
|
@@ -27,6 +24,7 @@ class ImageClassifier(object):
|
|
27 |
return torch.nn.functional.softmax(output[0], dim=0)
|
28 |
|
29 |
def classify_image(self, image):
|
|
|
30 |
transform = self.create_image_transform()
|
31 |
return self.model(transform(image).unsqueeze(0))
|
32 |
|
@@ -34,13 +32,11 @@ class ImageClassifier(object):
|
|
34 |
return create_transform(**resolve_data_config(
|
35 |
self.model.pretrained_cfg, model=self.model))
|
36 |
|
37 |
-
def get_labels(self):
|
38 |
-
return self.model.pretrained_cfg['label_names']
|
39 |
|
40 |
class ImageClassificationApp(object):
|
41 |
-
def __init__(self, title,
|
42 |
self.title = title
|
43 |
-
self.classifier =
|
44 |
|
45 |
def render(self):
|
46 |
st.title(self.title)
|
@@ -71,7 +67,13 @@ class ImageClassificationApp(object):
|
|
71 |
|
72 |
|
73 |
if __name__ == '__main__':
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
ImageClassificationApp(
|
75 |
'Pet Image Classification App',
|
76 |
-
|
77 |
).render()
|
|
|
8 |
|
9 |
|
10 |
class ImageClassifier(object):
|
11 |
+
def __init__(self, model, labels):
|
12 |
+
self.model = model
|
13 |
+
self.labels = labels
|
|
|
|
|
14 |
|
15 |
def get_top_5_predictions(self, image):
|
16 |
values, indices = torch.topk(self.get_output_probabilities(image), 5)
|
|
|
17 |
return [
|
18 |
+
{'label': self.labels[i], 'score': v.item()}
|
19 |
for i, v in zip(indices, values)
|
20 |
]
|
21 |
|
|
|
24 |
return torch.nn.functional.softmax(output[0], dim=0)
|
25 |
|
26 |
def classify_image(self, image):
|
27 |
+
self.model.eval()
|
28 |
transform = self.create_image_transform()
|
29 |
return self.model(transform(image).unsqueeze(0))
|
30 |
|
|
|
32 |
return create_transform(**resolve_data_config(
|
33 |
self.model.pretrained_cfg, model=self.model))
|
34 |
|
|
|
|
|
35 |
|
36 |
class ImageClassificationApp(object):
|
37 |
+
def __init__(self, title, classifier):
|
38 |
self.title = title
|
39 |
+
self.classifier = classifier
|
40 |
|
41 |
def render(self):
|
42 |
st.title(self.title)
|
|
|
67 |
|
68 |
|
69 |
if __name__ == '__main__':
|
70 |
+
model = timm.create_model(
|
71 |
+
'hf-hub:nateraw/resnet50-oxford-iiit-pet',
|
72 |
+
pretrained=True
|
73 |
+
)
|
74 |
+
labels = model.pretrained_cfg['label_names']
|
75 |
+
classifier = ImageClassifier(model, labels)
|
76 |
ImageClassificationApp(
|
77 |
'Pet Image Classification App',
|
78 |
+
classifier
|
79 |
).render()
|