File size: 16,952 Bytes
ba529ff 6261698 ba529ff 2045e5a ba529ff 2045e5a ba529ff 2045e5a ba529ff 2045e5a ba529ff 2045e5a ba529ff 2045e5a ba529ff 2045e5a ba529ff 2045e5a ba529ff 2045e5a ba529ff 2045e5a ba529ff 3f05747 ba529ff 05496fd ba529ff 2045e5a ba529ff 2045e5a ba529ff 3f05747 ba529ff 2045e5a ba529ff 2045e5a ba529ff a68f143 ba529ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 |
# %%
import matplotlib.style
from transformers import AutoProcessor, AutoModelForCausalLM
from PIL import Image
import pickle
import torch
from pathlib import Path
from PIL import Image
from PIL import ImageDraw
import numpy as np
from collections import namedtuple
from logging import getLogger
logger = getLogger(__name__)
# %%
class Florence:
def __init__(self, model_id:str, hack=False):
if hack:
return
self.model = (
AutoModelForCausalLM.from_pretrained(
model_id, trust_remote_code=True, torch_dtype="auto"
)
.eval()
.cuda()
)
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
self.model_id = model_id
def run(self, img:Image, task_prompt:str, extra_text:str|None=None):
logger.debug(f"run {task_prompt} {extra_text}")
model, processor = self.model, self.processor
prompt = task_prompt + (extra_text if extra_text else "")
inputs = processor(text=prompt, images=img, return_tensors="pt").to(
"cuda", torch.float16
)
generated_ids = model.generate(
input_ids=inputs["input_ids"],
pixel_values=inputs["pixel_values"],
max_new_tokens=1024,
early_stopping=False,
do_sample=False,
num_beams=3,
#temperature=0.1,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
parsed_answer = processor.post_process_generation(
generated_text,
task=task_prompt,
image_size=(img.width, img.height),
)
return parsed_answer
def model_init(hack=False):
fl = Florence("microsoft/Florence-2-large", hack=hack)
fl_ft = Florence("microsoft/Florence-2-large-ft", hack=hack)
return fl, fl_ft
#%%
# florence-2 tasks
TASK_OD = "<OD>"
TASK_SEGMENTATION = '<REFERRING_EXPRESSION_SEGMENTATION>'
TASK_CAPTION = "<CAPTION_TO_PHRASE_GROUNDING>"
TASK_OCR = "<OCR_WITH_REGION>"
TASK_GROUNDING = "<CAPTION_TO_PHRASE_GROUNDING>"
#%%
AIModelResult = namedtuple('AIModelResult',
['img', 'img2', 'meter_bbox', 'needle_polygons', 'circle_polygons', 'ocr1', 'ocr2'])
cached_results:dict[str, AIModelResult] = {}
#%%
def get_meter_bbox(fl:Florence, img:Image):
task_prompt, extra_text = TASK_GROUNDING, "a circular meter with white background"
parsed_answer = fl.run(img, task_prompt, extra_text)
assert len(parsed_answer) == 1
k,v = parsed_answer.popitem()
assert 'bboxes' in v
assert 'labels' in v
assert len(v['bboxes']) == 1
assert len(v['labels']) == 1
assert v['labels'][0] == 'a circular meter'
bbox = v['bboxes'][0]
return bbox
def get_circles(fl:Florence, img2:Image, polygons:list):
logger.info('get_circle')
img3 = Image.new('L', img2.size, color = 'black')
draw = ImageDraw.Draw(img3)
for polygon in polygons:
draw.polygon(polygon, outline='white', width=3, fill='white')
img2a = np.where(np.array(img3)[:,:,None]>0, np.array(img2), 255)
img4 = Image.fromarray(img2a)
parsed_answer = fl.run(img4, TASK_SEGMENTATION, "a circle")
assert len(parsed_answer) == 1
k,v = parsed_answer.popitem()
assert 'polygons' in v
assert len(v['polygons']) == 1
return v['polygons'][0]
def get_needle_polygons(fl:Florence, img2:Image):
parsed_answer = fl.run(img2, TASK_SEGMENTATION, "the long narrow black needle hand pass through the center of the cicular meter")
assert len(parsed_answer) == 1
k,v = parsed_answer.popitem()
assert 'polygons' in v
assert len(v['polygons']) == 1
needle_polygons = v['polygons'][0]
return needle_polygons
def get_ocr(fl:Florence, img2:Image):
logger.info('get_ocr')
parsed_answer = fl.run(img2, TASK_OCR)
assert len(parsed_answer)==1
k,v = parsed_answer.popitem()
return v
def get_ai_model_result(img:Image.Image|Path|str, fl:Florence, fl_ft:Florence):
logger.info("get_ai_model_result")
if isinstance(img, Path):
key = img.parts[-1]
elif isinstance(img, str):
key = img.split('/')[-1]
else:
key = None
if key is not None and key in cached_results:
return cached_results[key]
if isinstance(img, (Path, str)):
img = Image.open(img)
meter_bbox = get_meter_bbox(fl, img)
logger.info("get meter_bbox")
img2 = img.crop(meter_bbox)
needle_polygons = get_needle_polygons(fl, img2)
logger.info("get needle_polygons")
result = AIModelResult(img, img2, meter_bbox, needle_polygons,
get_circles(fl, img2, needle_polygons),
get_ocr(fl, img2),
get_ocr(fl_ft, img2)
)
if key is not None:
cached_results[key] = result
return result
#%%
from skimage.measure import regionprops
from skimage.measure import EllipseModel
from skimage.draw import ellipse_perimeter
def get_regionprops(polygons:list) -> regionprops:
logger.info('get_regionprops')
coords = np.concatenate(polygons).reshape(-1, 2)
size = tuple( (coords.max(axis=0)+2).astype('int') )
img = Image.new('L', size, color = 'black')
# draw circle polygon
draw = ImageDraw.Draw(img)
for polygon in polygons:
draw.polygon(polygon, outline='white', width=1, fill='white')
# use skimage to find the mass center of the circle
circle_imga = (np.array(img)>0).astype(np.uint8)
property = regionprops(circle_imga)[0]
return property
def estimate_ellipse(coords, enlarge_factor=1.0):
em = EllipseModel()
em.estimate(coords[:, ::-1])
y, x, a, b, theta = em.params
a, b = a*enlarge_factor, b*enlarge_factor
em_params = np.round([y,x, a, b]).astype('int')
c, r = ellipse_perimeter(*em_params, orientation=-theta)
return em_params, theta, (c, r)
def estimate_line(coords):
lm = LineModelND()
lm.estimate(coords)
return lm.params
#%%
#%%
from matplotlib import pyplot as plt
import matplotlib
from skimage.measure import LineModelND, ransac
matplotlib.style.use('dark_background')
def rotate_theta(theta):
return ((theta + 3*np.pi/2)%(2*np.pi))/(2*np.pi)*360
kg_cm2_labels = list(map(str, [1,3,5,7,9,11]))
psi_labels = list(map(str, range(20, 180, 20)))
# lousy decoupling
MeterResult = namedtuple('MeterResult', [
'result',
'needle_psi',
'needle_kg_cm2',
'needle_theta',
'orign',
'direction',
'center',
'lm',
'inliers',
'kg_cm2_texts',
'psi_texts',
'kg_cm2_centers',
'psi_centers',
'kg_cm2_theta',
'psi_theta',
'kg_cm2_psi',
'psi' ,
])
def read_meter(img:Image.Image|str|Path, fl, fl_ft):
# ai model results
logger.info("read_meter")
result = get_ai_model_result(img, fl, fl_ft)
logger.info('ai model done')
# needle direction
coords = np.concatenate(result.needle_polygons).reshape(-1, 2)
orign, direction = estimate_line(coords)
logger.info('needle direction done')
# calculate the meter center
circle_props = get_regionprops(result.circle_polygons)
center = circle_props.centroid[::-1]
# XXX: the needle direction is from center to orign
# HACK: use needle_head instead of origin compares to center
needle_coordinates = np.concatenate(result.needle_polygons).reshape(-1, 2)
needle_length = np.linalg.norm(needle_coordinates - center,axis=1)
farest_idx = np.argmax(needle_length)
needle_head = needle_coordinates[farest_idx]
if (needle_head - center) @ direction < 0:
direction = -direction
# calculate the needle theta
needle_theta = rotate_theta(np.arctan2(direction[1], direction[0]))
# calulate ocr texts to find kg/cm2 and psi labels
ocr1, ocr2 = result.ocr1, result.ocr2
kg_cm2_texts = {}
psi_texts = {}
quad_boxes = ocr1['quad_boxes']+ocr2['quad_boxes']
labels = ocr1['labels']+ocr2['labels']
for qbox, label in zip(quad_boxes, labels):
if label in kg_cm2_labels:
kg_cm2_texts[int(label)]=qbox
if label in psi_labels:
psi_texts[int(label)]=qbox
# calculate the center of kg/cm2 and psi labels
kg_cm2_centers = np.array(list(kg_cm2_texts.values())).reshape(-1, 4, 2).mean(axis=1)
psi_centers = np.array(list(psi_texts.values())).reshape(-1, 4, 2).mean(axis=1)
# convert kg/cm2 and psi labels to polar coordinates, origin is the center of the meter
# the angle is in degree which is more intuitive
kg_cm2_coords = kg_cm2_centers - center
kg_cm2_theta = rotate_theta(np.arctan2(kg_cm2_coords[:, 1], kg_cm2_coords[:, 0]))
psi_coords = psi_centers - center
psi_theta = rotate_theta(np.arctan2(psi_coords[:, 1], psi_coords[:, 0]))
# convert kg_cm2 to psi for fitting a line model
kg_cm2 = np.array(list(kg_cm2_texts.keys()))
kg_cm2_psi = kg_cm2 * 14.223
# combine kg/cm2 and psi labels to fit a line model
psi = np.array(list(psi_texts.keys()))
Y = np.concatenate([kg_cm2_psi, psi])
X = np.concatenate([kg_cm2_theta, psi_theta])
data = np.stack([X, Y], axis=1)
# run ransac to robustly fit a line model
lm, inliers = ransac(data, LineModelND, min_samples=3,
residual_threshold=15,
max_trials=2)
# use the model to calculated the needle psi and kg/cm2
needle_psi = lm.predict(needle_theta)[1]
needle_kg_cm2 = needle_psi / 14.223
logger.info('meter result done')
return MeterResult(result=result,
needle_psi=needle_psi,
needle_kg_cm2=needle_kg_cm2,
needle_theta=needle_theta,
orign=orign,
direction=direction,
center=center,
lm=lm,
inliers=data[inliers].T,
kg_cm2_texts=kg_cm2_texts,
psi_texts=psi_texts,
kg_cm2_centers=kg_cm2_centers,
psi_centers=psi_centers,
kg_cm2_theta=kg_cm2_theta,
psi_theta=psi_theta,
kg_cm2_psi=kg_cm2_psi,
psi=psi,
)
def more_visualization_data(meter_result:MeterResult):
logger.info('more visualization')
result = meter_result.result
center = meter_result.center
# following calculations are for visualization and debugging
# calculate the needle head(farest point from center)
needle_coordinates = np.concatenate(result.needle_polygons).reshape(-1, 2)
needle_length = np.linalg.norm(needle_coordinates - center,axis=1)
farest_idx = np.argmax(needle_length)
needle_head = needle_coordinates[farest_idx]
needle_head_length = needle_length[farest_idx]
direction = meter_result.direction * needle_head_length
# inliners data
inlier_theta, inlier_psi = meter_result.inliers
# predict psi from 0 to 360
predict_theta = np.linspace(0, 360, 100)
predict_psi = meter_result.lm.predict(predict_theta)[:, 1]
return inlier_theta, inlier_psi, predict_theta, predict_psi, needle_head, direction
def visualization(meter_result:MeterResult):
logger.info('visualization')
result = meter_result.result
center = meter_result.center
needle_psi, needle_kg_cm2 = meter_result.needle_psi, meter_result.needle_kg_cm2
inlier_theta, inlier_psi, predict_theta, predict_psi, needle_head, direction = more_visualization_data(meter_result)
# drawing and visualization
draw = ImageDraw.Draw(result.img2.copy())
# draw needle polygons
for polygon in result.needle_polygons:
draw.polygon(polygon, outline='red', width=3)
# draw center circle
draw = ImageDraw.Draw(draw._image.convert('RGBA'))
draw2 = ImageDraw.Draw(Image.new('RGBA', draw._image.size, (0,0,0,0)))
for polygon in result.circle_polygons:
draw2.polygon(polygon, outline='purple', width=1, fill = (255,128,255,100))
img = Image.alpha_composite(draw._image, draw2._image)
draw = ImageDraw.Draw(img.convert('RGB'))
# draw needle direction
draw.line((center[0], center[1], center[0]+direction[0], center[1]+direction[1]), fill='yellow', width=3)
# draw a dot at center
draw.ellipse((center[0]-5, center[1]-5, center[0]+5, center[1]+5), outline='yellow', width=3)
# draw a dot at needle_head
draw.ellipse((needle_head[0]-5, needle_head[1]-5, needle_head[0]+5, needle_head[1]+5), outline='yellow', width=3)
for x,y in meter_result.kg_cm2_centers:
draw.ellipse((x-3, y-3, x+3, y+3), outline='blue', width=3)
for x,y in meter_result.psi_centers:
draw.ellipse((x-3, y-3, x+3, y+3), outline='green', width=3)
for label,quad_box in meter_result.kg_cm2_texts.items():
draw.polygon(quad_box, outline='blue', width=1)
draw.text((quad_box[0], quad_box[1]-10), str(label), fill='blue', anchor='ls')
for label,quad_box in meter_result.psi_texts.items():
draw.polygon(quad_box, outline='green', width=1)
draw.text((quad_box[0], quad_box[1]-10), str(label), fill='green', anchor='ls')
if len(meter_result.kg_cm2_centers) >4:
# the ellipse of kg/cm2 labels, currently only for visualization
em_params, theta, (c, r) = estimate_ellipse(meter_result.kg_cm2_centers)
y, x = em_params[:2]
draw.ellipse((x-5, y-5, x+5, y+5), outline='blue', width=1)
imga = np.array(draw._image)
imga[c,r] = (0, 0, 255)
draw = ImageDraw.Draw(Image.fromarray(imga))
if len(meter_result.psi_centers) >4:
# the ellipse of psi labels, currently only for visualization
em_params, theta, (c, r) = estimate_ellipse(meter_result.psi_centers)
draw.ellipse((x-5, y-5, x+5, y+5), outline='green', width=1)
imga = np.array(draw._image)
imga[c,r] = (0, 255, 0)
y, x = em_params[:2]
draw = ImageDraw.Draw(Image.fromarray(imga))
draw.text((needle_head[0]-10, needle_head[1]-10),
f'psi={needle_psi:.1f} kg_cm2={needle_kg_cm2:.2f}',anchor='ls',
fill='yellow')
plt.plot(predict_theta, predict_psi, color='red', alpha=0.5)
plt.plot(meter_result.kg_cm2_theta, meter_result.kg_cm2_psi, 'o', color='#77F')
plt.plot(meter_result.psi_theta, meter_result.psi, 'o', color='#7F7')
plt.plot(inlier_theta, inlier_psi, 'x', color='red', alpha=0.5)
plt.vlines(meter_result.needle_theta, 0, 160, colors='yellow', alpha=0.5)
plt.hlines(meter_result.needle_psi, 0, 360, colors='yellow', alpha=0.5)
plt.text(meter_result.needle_theta-20, meter_result.needle_psi-20,
f'psi={needle_psi:.1f} kg_cm2={needle_kg_cm2:.2f}', color='yellow')
plt.xlim(0, 360)
plt.ylim(0, 160)
logger.info('visualization done')
return draw._image, plt.gcf()
def clear_cache():
cached_results.clear()
def save_cache():
pickle.dump(cached_results, open('cached_results.pkl', 'wb'))
def load_cache():
global cached_results
cached_results = pickle.load(open('cached_results.pkl', 'rb'))
#%%
if __name__ == '__main__':
from io import BytesIO
from IPython.display import display
fl, fl_ft = model_init(hack=False)
#load_cache()
clear_cache()
imgs = list(Path('images/good').glob('*.jpg'))#[-1:]
W, H = 640, 480
for img_fn in imgs:
print(img_fn)
meter_result = read_meter(img_fn, fl, fl_ft)
img, fig = visualization(meter_result)
# resize draw._image to fit WxH and keep aspect ratio
w, h = meter_result.result.img2.size
if w/W > h/H:
w, h = W, int(h*W/w)
else:
w, h = int(w*H/h), H
display(img.resize((w, h)))
# convert figure to PIL image using io.BytesIO
buf = BytesIO()
fig.savefig(buf, format='png')
buf.seek(0)
fig_img = Image.open(buf)
display(fig_img)
# clear plot
plt.clf()
# %%
|