|
|
|
import matplotlib.style |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
from PIL import Image |
|
import torch |
|
from pathlib import Path |
|
from PIL import Image |
|
from PIL import ImageDraw |
|
from IPython.display import display |
|
import numpy as np |
|
from collections import namedtuple |
|
import sys |
|
print(sys.version_info) |
|
|
|
class Florence: |
|
def __init__(self, model_id:str, hack=False): |
|
if hack: |
|
return |
|
self.model = ( |
|
AutoModelForCausalLM.from_pretrained( |
|
model_id, trust_remote_code=True, torch_dtype="auto" |
|
) |
|
.eval() |
|
.cuda() |
|
) |
|
self.processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) |
|
self.model_id = model_id |
|
def run(self, img:Image, task_prompt:str, extra_text:str|None=None): |
|
model, processor = self.model, self.processor |
|
prompt = task_prompt + (extra_text if extra_text else "") |
|
inputs = processor(text=prompt, images=img, return_tensors="pt").to( |
|
"cuda", torch.float16 |
|
) |
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
early_stopping=False, |
|
do_sample=False, |
|
num_beams=3, |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation( |
|
generated_text, |
|
task=task_prompt, |
|
image_size=(img.width, img.height), |
|
) |
|
return parsed_answer |
|
def model_init(): |
|
fl = Florence("microsoft/Florence-2-large", hack=False) |
|
fl_ft = Florence("microsoft/Florence-2-large-ft", hack=False) |
|
return fl, fl_ft |
|
|
|
TASK_OD = "<OD>" |
|
TASK_SEGMENTATION = '<REFERRING_EXPRESSION_SEGMENTATION>' |
|
TASK_CAPTION = "<CAPTION_TO_PHRASE_GROUNDING>" |
|
TASK_OCR = "<OCR_WITH_REGION>" |
|
TASK_GROUNDING = "<CAPTION_TO_PHRASE_GROUNDING>" |
|
|
|
|
|
from skimage.measure import LineModelND, ransac |
|
def get_polygons(fl:Florence, img2:Image, prompt): |
|
parsed_answer = fl.run(img2, TASK_SEGMENTATION, prompt) |
|
assert len(parsed_answer) == 1 |
|
k,v = parsed_answer.popitem() |
|
assert 'polygons' in v |
|
assert len(v['polygons']) == 1 |
|
polygons = v['polygons'][0] |
|
return polygons |
|
|
|
def get_ocr(fl:Florence, img2:Image): |
|
parsed_answer = fl.run(img2, TASK_OCR) |
|
assert len(parsed_answer)==1 |
|
k,v = parsed_answer.popitem() |
|
return v |
|
imgs = list(Path('images/other').glob('*.jpg')) |
|
meter_labels = list(map(str, range(0, 600, 100))) |
|
|
|
def read_meter(img, fl:Florence, fl_ft:Florence): |
|
if isinstance(img, str) or isinstance(img, Path): |
|
print(img) |
|
img = Image.open(img) |
|
red_polygons = get_polygons(fl, img, 'red triangle pointer') |
|
|
|
draw = ImageDraw.Draw(img) |
|
ocr_text = {} |
|
ocr1 = get_ocr(fl, img) |
|
ocr2 = get_ocr(fl_ft, img) |
|
quad_boxes = ocr1['quad_boxes']+ocr2['quad_boxes'] |
|
labels = ocr1['labels']+ocr2['labels'] |
|
for quad_box, label in zip(quad_boxes, labels): |
|
if label in meter_labels: |
|
ocr_text[int(label)] = quad_box |
|
for label, quad_box in ocr_text.items(): |
|
draw.polygon(quad_box, outline='green', width=3) |
|
draw.text((quad_box[0], quad_box[1]-10), str(label), fill='green', anchor='ls') |
|
text_centers = np.array(list(ocr_text.values())).reshape(-1, 4, 2).mean(axis=1) |
|
lm = LineModelND() |
|
lm.estimate(text_centers) |
|
orign, direction = lm.params |
|
|
|
text_centers_shifted = text_centers - orign |
|
text_centers_norm = text_centers_shifted @ direction |
|
lm2 = LineModelND() |
|
I = np.array(list(ocr_text.keys())) |
|
L = text_centers_norm |
|
data = np.stack([I, L], axis=1) |
|
lm2.estimate(data) |
|
ls = lm2.predict(list(range(0, 600, 100)))[:, 1] |
|
x0, y0 = ls[0] * direction + orign |
|
x1, y1 = ls[-1] * direction + orign |
|
draw.line((x0, y0, x1, y1), fill='yellow', width=3) |
|
for l in ls: |
|
x, y = l * direction + orign |
|
draw.ellipse((x-5, y-5, x+5, y+5), outline='yellow', width=3) |
|
red_coords = np.concatenate(red_polygons).reshape(-1, 2) |
|
red_shifted = red_coords - orign |
|
red_norm = red_shifted @ direction |
|
red_l = red_norm.mean() |
|
red_i = np.clip(lm2.predict_x([red_l]), 0, 500) |
|
red_l = lm2.predict_y(red_i)[0] |
|
red_center = red_l * direction + orign |
|
draw.ellipse((red_center[0]-5, red_center[1]-5, red_center[0]+5, red_center[1]+5), outline='red', width=3) |
|
return red_i[0], img |
|
|
|
|
|
|
|
def main(): |
|
fl, fl_ft = model_init() |
|
for img_fn in imgs: |
|
print(img_fn) |
|
img = Image.open(img_fn) |
|
red_i, img2 = read_meater(img, fl, fl_ft) |
|
print(red_i) |
|
display(img2) |
|
if __name__ == '__main__': |
|
main() |
|
|
|
|