Image2Drawing / backup2.app.py
tmafantiri's picture
Update backup2.app.py
b667569 verified
raw
history blame
4.56 kB
import numpy as np
import torch
import torch.nn as nn
import gradio as gr
from PIL import Image
import torchvision.transforms as transforms
import os # πŸ“ For file operations
# 🧠 Neural network layers
norm_layer = nn.InstanceNorm2d
# 🧱 Building block for the generator
class ResidualBlock(nn.Module):
def __init__(self, in_features):
super(ResidualBlock, self).__init__()
conv_block = [ nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features),
nn.ReLU(inplace=True),
nn.ReflectionPad2d(1),
nn.Conv2d(in_features, in_features, 3),
norm_layer(in_features)
]
self.conv_block = nn.Sequential(*conv_block)
def forward(self, x):
return x + self.conv_block(x)
# 🎨 Generator model for creating line drawings
class Generator(nn.Module):
def __init__(self, input_nc, output_nc, n_residual_blocks=9, sigmoid=True):
super(Generator, self).__init__()
# 🏁 Initial convolution block
model0 = [ nn.ReflectionPad2d(3),
nn.Conv2d(input_nc, 64, 7),
norm_layer(64),
nn.ReLU(inplace=True) ]
self.model0 = nn.Sequential(*model0)
# πŸ”½ Downsampling
model1 = []
in_features = 64
out_features = in_features*2
for _ in range(2):
model1 += [ nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features*2
self.model1 = nn.Sequential(*model1)
# πŸ” Residual blocks
model2 = []
for _ in range(n_residual_blocks):
model2 += [ResidualBlock(in_features)]
self.model2 = nn.Sequential(*model2)
# πŸ”Ό Upsampling
model3 = []
out_features = in_features//2
for _ in range(2):
model3 += [ nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
norm_layer(out_features),
nn.ReLU(inplace=True) ]
in_features = out_features
out_features = in_features//2
self.model3 = nn.Sequential(*model3)
# 🎭 Output layer
model4 = [ nn.ReflectionPad2d(3),
nn.Conv2d(64, output_nc, 7)]
if sigmoid:
model4 += [nn.Sigmoid()]
self.model4 = nn.Sequential(*model4)
def forward(self, x, cond=None):
out = self.model0(x)
out = self.model1(out)
out = self.model2(out)
out = self.model3(out)
out = self.model4(out)
return out
# πŸ”§ Load the models
model1 = Generator(3, 1, 3)
model1.load_state_dict(torch.load('model.pth', map_location=torch.device('cpu'), weights_only=True))
model1.eval()
model2 = Generator(3, 1, 3)
model2.load_state_dict(torch.load('model2.pth', map_location=torch.device('cpu'), weights_only=True))
model2.eval()
# πŸ–ΌοΈ Function to process the image and create line drawing
def predict(input_img, ver):
input_img = Image.open(input_img)
transform = transforms.Compose([transforms.Resize(256, Image.BICUBIC), transforms.ToTensor()])
input_img = transform(input_img)
input_img = torch.unsqueeze(input_img, 0)
drawing = 0
with torch.no_grad():
if ver == 'Simple Lines':
drawing = model2(input_img)[0].detach()
else:
drawing = model1(input_img)[0].detach()
drawing = transforms.ToPILImage()(drawing)
return drawing
# πŸ“ Title for the Gradio interface
title="πŸ–ŒοΈ Image to Simple and Complex Artistic Drawings"
# πŸ–ΌοΈ Dynamically generate examples from images in the directory
examples = []
image_dir = '.' # Assuming images are in the current directory
for file in os.listdir(image_dir):
if file.lower().endswith(('.png', '.jpg', '.jpeg', '.gif')):
examples.append([file, 'Simple Lines'])
examples.append([file, 'Complex Lines'])
# πŸš€ Create and launch the Gradio interface
iface = gr.Interface(
fn=predict,
inputs=[
gr.Image(type='filepath'),
gr.Radio(['Complex Lines', 'Simple Lines'], label='version', value='Simple Lines')
],
outputs=gr.Image(type="pil"),
title=title,
examples=examples
)
iface.launch()