|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from pdb import set_trace as stx |
|
import numbers |
|
|
|
from einops import rearrange |
|
|
|
|
|
|
|
|
|
|
|
|
|
def to_3d(x): |
|
return rearrange(x, 'b c h w -> b (h w) c') |
|
|
|
def to_4d(x,h,w): |
|
return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w) |
|
|
|
class BiasFree_LayerNorm(nn.Module): |
|
def __init__(self, normalized_shape): |
|
super(BiasFree_LayerNorm, self).__init__() |
|
if isinstance(normalized_shape, numbers.Integral): |
|
normalized_shape = (normalized_shape,) |
|
normalized_shape = torch.Size(normalized_shape) |
|
|
|
assert len(normalized_shape) == 1 |
|
|
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.normalized_shape = normalized_shape |
|
|
|
def forward(self, x): |
|
sigma = x.var(-1, keepdim=True, unbiased=False) |
|
return x / torch.sqrt(sigma+1e-5) * self.weight |
|
|
|
class WithBias_LayerNorm(nn.Module): |
|
def __init__(self, normalized_shape): |
|
super(WithBias_LayerNorm, self).__init__() |
|
if isinstance(normalized_shape, numbers.Integral): |
|
normalized_shape = (normalized_shape,) |
|
normalized_shape = torch.Size(normalized_shape) |
|
|
|
assert len(normalized_shape) == 1 |
|
|
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.bias = nn.Parameter(torch.zeros(normalized_shape)) |
|
self.normalized_shape = normalized_shape |
|
|
|
def forward(self, x): |
|
mu = x.mean(-1, keepdim=True) |
|
sigma = x.var(-1, keepdim=True, unbiased=False) |
|
return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias |
|
|
|
|
|
class LayerNorm(nn.Module): |
|
def __init__(self, dim, LayerNorm_type): |
|
super(LayerNorm, self).__init__() |
|
if LayerNorm_type =='BiasFree': |
|
self.body = BiasFree_LayerNorm(dim) |
|
else: |
|
self.body = WithBias_LayerNorm(dim) |
|
|
|
def forward(self, x): |
|
h, w = x.shape[-2:] |
|
return to_4d(self.body(to_3d(x)), h, w) |
|
|
|
|
|
|
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__(self, dim, ffn_expansion_factor, bias): |
|
super(FeedForward, self).__init__() |
|
|
|
hidden_features = int(dim*ffn_expansion_factor) |
|
|
|
self.project_in = nn.Conv2d(dim, hidden_features*2, kernel_size=1, bias=bias) |
|
|
|
self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias) |
|
|
|
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias) |
|
|
|
def forward(self, x): |
|
x = self.project_in(x) |
|
x1, x2 = self.dwconv(x).chunk(2, dim=1) |
|
x = F.gelu(x1) * x2 |
|
x = self.project_out(x) |
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class Attention(nn.Module): |
|
def __init__(self, dim, num_heads, bias): |
|
super(Attention, self).__init__() |
|
self.num_heads = num_heads |
|
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) |
|
|
|
self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias) |
|
self.qkv_dwconv = nn.Conv2d(dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias) |
|
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias) |
|
|
|
|
|
|
|
def forward(self, x): |
|
b,c,h,w = x.shape |
|
|
|
qkv = self.qkv_dwconv(self.qkv(x)) |
|
q,k,v = qkv.chunk(3, dim=1) |
|
|
|
q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads) |
|
k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads) |
|
v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads) |
|
|
|
q = torch.nn.functional.normalize(q, dim=-1) |
|
k = torch.nn.functional.normalize(k, dim=-1) |
|
|
|
attn = (q @ k.transpose(-2, -1)) * self.temperature |
|
attn = attn.softmax(dim=-1) |
|
|
|
out = (attn @ v) |
|
|
|
out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w) |
|
|
|
out = self.project_out(out) |
|
return out |
|
|
|
|
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type): |
|
super(TransformerBlock, self).__init__() |
|
|
|
self.norm1 = LayerNorm(dim, LayerNorm_type) |
|
self.attn = Attention(dim, num_heads, bias) |
|
self.norm2 = LayerNorm(dim, LayerNorm_type) |
|
self.ffn = FeedForward(dim, ffn_expansion_factor, bias) |
|
|
|
def forward(self, x): |
|
x = x + self.attn(self.norm1(x)) |
|
x = x + self.ffn(self.norm2(x)) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class OverlapPatchEmbed(nn.Module): |
|
def __init__(self, in_c=3, embed_dim=48, bias=False): |
|
super(OverlapPatchEmbed, self).__init__() |
|
|
|
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class Downsample(nn.Module): |
|
def __init__(self, n_feat): |
|
super(Downsample, self).__init__() |
|
|
|
self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat//2, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.PixelUnshuffle(2)) |
|
|
|
def forward(self, x): |
|
return self.body(x) |
|
|
|
class Upsample(nn.Module): |
|
def __init__(self, n_feat): |
|
super(Upsample, self).__init__() |
|
|
|
self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat*2, kernel_size=3, stride=1, padding=1, bias=False), |
|
nn.PixelShuffle(2)) |
|
|
|
def forward(self, x): |
|
return self.body(x) |
|
|
|
|
|
|
|
class Restormer(nn.Module): |
|
def __init__(self, |
|
inp_channels=3, |
|
out_channels=3, |
|
dim = 48, |
|
num_blocks = [4,6,6,8], |
|
num_refinement_blocks = 4, |
|
heads = [1,2,4,8], |
|
ffn_expansion_factor = 2.66, |
|
bias = False, |
|
LayerNorm_type = 'WithBias', |
|
dual_pixel_task = False |
|
): |
|
|
|
super(Restormer, self).__init__() |
|
|
|
self.patch_embed = OverlapPatchEmbed(inp_channels, dim) |
|
|
|
self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]) |
|
|
|
self.down1_2 = Downsample(dim) |
|
self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])]) |
|
|
|
self.down2_3 = Downsample(int(dim*2**1)) |
|
self.encoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])]) |
|
|
|
self.down3_4 = Downsample(int(dim*2**2)) |
|
self.latent = nn.Sequential(*[TransformerBlock(dim=int(dim*2**3), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[3])]) |
|
|
|
self.up4_3 = Upsample(int(dim*2**3)) |
|
self.reduce_chan_level3 = nn.Conv2d(int(dim*2**3), int(dim*2**2), kernel_size=1, bias=bias) |
|
self.decoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[2])]) |
|
|
|
|
|
self.up3_2 = Upsample(int(dim*2**2)) |
|
self.reduce_chan_level2 = nn.Conv2d(int(dim*2**2), int(dim*2**1), kernel_size=1, bias=bias) |
|
self.decoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[1])]) |
|
|
|
self.up2_1 = Upsample(int(dim*2**1)) |
|
|
|
self.decoder_level1 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_blocks[0])]) |
|
|
|
self.refinement = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type) for i in range(num_refinement_blocks)]) |
|
|
|
|
|
self.dual_pixel_task = dual_pixel_task |
|
if self.dual_pixel_task: |
|
self.skip_conv = nn.Conv2d(dim, int(dim*2**1), kernel_size=1, bias=bias) |
|
|
|
|
|
self.output = nn.Conv2d(int(dim*2**1), out_channels, kernel_size=3, stride=1, padding=1, bias=bias) |
|
|
|
def forward(self, inp_img): |
|
|
|
inp_enc_level1 = self.patch_embed(inp_img) |
|
out_enc_level1 = self.encoder_level1(inp_enc_level1) |
|
|
|
inp_enc_level2 = self.down1_2(out_enc_level1) |
|
out_enc_level2 = self.encoder_level2(inp_enc_level2) |
|
|
|
inp_enc_level3 = self.down2_3(out_enc_level2) |
|
out_enc_level3 = self.encoder_level3(inp_enc_level3) |
|
|
|
inp_enc_level4 = self.down3_4(out_enc_level3) |
|
latent = self.latent(inp_enc_level4) |
|
|
|
inp_dec_level3 = self.up4_3(latent) |
|
inp_dec_level3 = torch.cat([inp_dec_level3, out_enc_level3], 1) |
|
inp_dec_level3 = self.reduce_chan_level3(inp_dec_level3) |
|
out_dec_level3 = self.decoder_level3(inp_dec_level3) |
|
|
|
inp_dec_level2 = self.up3_2(out_dec_level3) |
|
inp_dec_level2 = torch.cat([inp_dec_level2, out_enc_level2], 1) |
|
inp_dec_level2 = self.reduce_chan_level2(inp_dec_level2) |
|
out_dec_level2 = self.decoder_level2(inp_dec_level2) |
|
|
|
inp_dec_level1 = self.up2_1(out_dec_level2) |
|
inp_dec_level1 = torch.cat([inp_dec_level1, out_enc_level1], 1) |
|
out_dec_level1 = self.decoder_level1(inp_dec_level1) |
|
|
|
out_dec_level1 = self.refinement(out_dec_level1) |
|
|
|
|
|
if self.dual_pixel_task: |
|
out_dec_level1 = out_dec_level1 + self.skip_conv(inp_enc_level1) |
|
out_dec_level1 = self.output(out_dec_level1) |
|
|
|
else: |
|
out_dec_level1 = self.output(out_dec_level1) + inp_img |
|
|
|
|
|
return out_dec_level1 |
|
|
|
|