Spaces:
Running
Running
File size: 5,085 Bytes
50d8f01 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
import re
from abc import ABC, abstractmethod
from itertools import groupby
from typing import List, Optional, Tuple
import torch
from torch import Tensor
from torch.nn.utils.rnn import pad_sequence
class CharsetAdapter:
"""Transforms labels according to the target charset."""
def __init__(self, target_charset) -> None:
super().__init__()
self.charset = target_charset ###
self.lowercase_only = target_charset == target_charset.lower()
self.uppercase_only = target_charset == target_charset.upper()
# self.unsupported = f'[^{re.escape(target_charset)}]'
def __call__(self, label):
if self.lowercase_only:
label = label.lower()
elif self.uppercase_only:
label = label.upper()
return label
class BaseTokenizer(ABC):
def __init__(self, charset: str, specials_first: tuple = (), specials_last: tuple = ()) -> None:
self._itos = specials_first + tuple(charset+'[UNK]') + specials_last
self._stoi = {s: i for i, s in enumerate(self._itos)}
def __len__(self):
return len(self._itos)
def _tok2ids(self, tokens: str) -> List[int]:
return [self._stoi[s] for s in tokens]
def _ids2tok(self, token_ids: List[int], join: bool = True) -> str:
tokens = [self._itos[i] for i in token_ids]
return ''.join(tokens) if join else tokens
@abstractmethod
def encode(self, labels: List[str], device: Optional[torch.device] = None) -> Tensor:
"""Encode a batch of labels to a representation suitable for the model.
Args:
labels: List of labels. Each can be of arbitrary length.
device: Create tensor on this device.
Returns:
Batched tensor representation padded to the max label length. Shape: N, L
"""
raise NotImplementedError
@abstractmethod
def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]:
"""Internal method which performs the necessary filtering prior to decoding."""
raise NotImplementedError
def decode(self, token_dists: Tensor, raw: bool = False) -> Tuple[List[str], List[Tensor]]:
"""Decode a batch of token distributions.
Args:
token_dists: softmax probabilities over the token distribution. Shape: N, L, C
raw: return unprocessed labels (will return list of list of strings)
Returns:
list of string labels (arbitrary length) and
their corresponding sequence probabilities as a list of Tensors
"""
batch_tokens = []
batch_probs = []
for dist in token_dists:
probs, ids = dist.max(-1) # greedy selection
if not raw:
probs, ids = self._filter(probs, ids)
tokens = self._ids2tok(ids, not raw)
batch_tokens.append(tokens)
batch_probs.append(probs)
return batch_tokens, batch_probs
class Tokenizer(BaseTokenizer):
BOS = '[B]'
EOS = '[E]'
PAD = '[P]'
def __init__(self, charset: str) -> None:
specials_first = (self.EOS,)
specials_last = (self.BOS, self.PAD)
super().__init__(charset, specials_first, specials_last)
self.eos_id, self.bos_id, self.pad_id = [self._stoi[s] for s in specials_first + specials_last]
def encode(self, labels: List[str], device: Optional[torch.device] = None) -> Tensor:
batch = [torch.as_tensor([self.bos_id] + self._tok2ids(y) + [self.eos_id], dtype=torch.long, device=device)
for y in labels]
return pad_sequence(batch, batch_first=True, padding_value=self.pad_id)
def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]:
ids = ids.tolist()
try:
eos_idx = ids.index(self.eos_id)
except ValueError:
eos_idx = len(ids) # Nothing to truncate.
# Truncate after EOS
ids = ids[:eos_idx]
probs = probs[:eos_idx + 1] # but include prob. for EOS (if it exists)
return probs, ids
class CTCTokenizer(BaseTokenizer):
BLANK = '[B]'
def __init__(self, charset: str) -> None:
# BLANK uses index == 0 by default
super().__init__(charset, specials_first=(self.BLANK,))
self.blank_id = self._stoi[self.BLANK]
def encode(self, labels: List[str], device: Optional[torch.device] = None) -> Tensor:
# We use a padded representation since we don't want to use CUDNN's CTC implementation
batch = [torch.as_tensor(self._tok2ids(y), dtype=torch.long, device=device) for y in labels]
return pad_sequence(batch, batch_first=True, padding_value=self.blank_id)
def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]:
# Best path decoding:
ids = list(zip(*groupby(ids.tolist())))[0] # Remove duplicate tokens
ids = [x for x in ids if x != self.blank_id] # Remove BLANKs
# `probs` is just pass-through since all positions are considered part of the path
return probs, ids |