Spaces:
Running
Running
WIP
Browse files- utils/tokenizer_base.py +44 -30
utils/tokenizer_base.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import re
|
2 |
from abc import ABC, abstractmethod
|
3 |
from itertools import groupby
|
4 |
from typing import List, Optional, Tuple
|
@@ -13,10 +12,9 @@ class CharsetAdapter:
|
|
13 |
|
14 |
def __init__(self, target_charset) -> None:
|
15 |
super().__init__()
|
16 |
-
self.charset = target_charset
|
17 |
self.lowercase_only = target_charset == target_charset.lower()
|
18 |
self.uppercase_only = target_charset == target_charset.upper()
|
19 |
-
# self.unsupported = f'[^{re.escape(target_charset)}]'
|
20 |
|
21 |
def __call__(self, label):
|
22 |
if self.lowercase_only:
|
@@ -28,8 +26,10 @@ class CharsetAdapter:
|
|
28 |
|
29 |
class BaseTokenizer(ABC):
|
30 |
|
31 |
-
def __init__(
|
32 |
-
self
|
|
|
|
|
33 |
self._stoi = {s: i for i, s in enumerate(self._itos)}
|
34 |
|
35 |
def __len__(self):
|
@@ -40,10 +40,12 @@ class BaseTokenizer(ABC):
|
|
40 |
|
41 |
def _ids2tok(self, token_ids: List[int], join: bool = True) -> str:
|
42 |
tokens = [self._itos[i] for i in token_ids]
|
43 |
-
return
|
44 |
|
45 |
@abstractmethod
|
46 |
-
def encode(
|
|
|
|
|
47 |
"""Encode a batch of labels to a representation suitable for the model.
|
48 |
|
49 |
Args:
|
@@ -60,7 +62,9 @@ class BaseTokenizer(ABC):
|
|
60 |
"""Internal method which performs the necessary filtering prior to decoding."""
|
61 |
raise NotImplementedError
|
62 |
|
63 |
-
def decode(
|
|
|
|
|
64 |
"""Decode a batch of token distributions.
|
65 |
|
66 |
Args:
|
@@ -74,7 +78,7 @@ class BaseTokenizer(ABC):
|
|
74 |
batch_tokens = []
|
75 |
batch_probs = []
|
76 |
for dist in token_dists:
|
77 |
-
probs, ids = dist.max(-1)
|
78 |
if not raw:
|
79 |
probs, ids = self._filter(probs, ids)
|
80 |
tokens = self._ids2tok(ids, not raw)
|
@@ -84,19 +88,29 @@ class BaseTokenizer(ABC):
|
|
84 |
|
85 |
|
86 |
class Tokenizer(BaseTokenizer):
|
87 |
-
BOS =
|
88 |
-
EOS =
|
89 |
-
PAD =
|
90 |
|
91 |
def __init__(self, charset: str) -> None:
|
92 |
specials_first = (self.EOS,)
|
93 |
specials_last = (self.BOS, self.PAD)
|
94 |
super().__init__(charset, specials_first, specials_last)
|
95 |
-
self.eos_id, self.bos_id, self.pad_id = [
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
return pad_sequence(batch, batch_first=True, padding_value=self.pad_id)
|
101 |
|
102 |
def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]:
|
@@ -104,29 +118,29 @@ class Tokenizer(BaseTokenizer):
|
|
104 |
try:
|
105 |
eos_idx = ids.index(self.eos_id)
|
106 |
except ValueError:
|
107 |
-
eos_idx = len(ids)
|
108 |
-
# Truncate after EOS
|
109 |
ids = ids[:eos_idx]
|
110 |
-
probs = probs[:eos_idx + 1]
|
111 |
return probs, ids
|
112 |
|
113 |
|
114 |
class CTCTokenizer(BaseTokenizer):
|
115 |
-
BLANK =
|
116 |
|
117 |
def __init__(self, charset: str) -> None:
|
118 |
-
# BLANK uses index == 0 by default
|
119 |
super().__init__(charset, specials_first=(self.BLANK,))
|
120 |
self.blank_id = self._stoi[self.BLANK]
|
121 |
|
122 |
-
def encode(
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
return pad_sequence(batch, batch_first=True, padding_value=self.blank_id)
|
126 |
|
127 |
def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]:
|
128 |
-
|
129 |
-
ids =
|
130 |
-
|
131 |
-
# `probs` is just pass-through since all positions are considered part of the path
|
132 |
-
return probs, ids
|
|
|
|
|
1 |
from abc import ABC, abstractmethod
|
2 |
from itertools import groupby
|
3 |
from typing import List, Optional, Tuple
|
|
|
12 |
|
13 |
def __init__(self, target_charset) -> None:
|
14 |
super().__init__()
|
15 |
+
self.charset = target_charset
|
16 |
self.lowercase_only = target_charset == target_charset.lower()
|
17 |
self.uppercase_only = target_charset == target_charset.upper()
|
|
|
18 |
|
19 |
def __call__(self, label):
|
20 |
if self.lowercase_only:
|
|
|
26 |
|
27 |
class BaseTokenizer(ABC):
|
28 |
|
29 |
+
def __init__(
|
30 |
+
self, charset: str, specials_first: tuple = (), specials_last: tuple = ()
|
31 |
+
) -> None:
|
32 |
+
self._itos = specials_first + tuple(charset + "[UNK]") + specials_last
|
33 |
self._stoi = {s: i for i, s in enumerate(self._itos)}
|
34 |
|
35 |
def __len__(self):
|
|
|
40 |
|
41 |
def _ids2tok(self, token_ids: List[int], join: bool = True) -> str:
|
42 |
tokens = [self._itos[i] for i in token_ids]
|
43 |
+
return "".join(tokens) if join else tokens
|
44 |
|
45 |
@abstractmethod
|
46 |
+
def encode(
|
47 |
+
self, labels: List[str], device: Optional[torch.device] = None
|
48 |
+
) -> Tensor:
|
49 |
"""Encode a batch of labels to a representation suitable for the model.
|
50 |
|
51 |
Args:
|
|
|
62 |
"""Internal method which performs the necessary filtering prior to decoding."""
|
63 |
raise NotImplementedError
|
64 |
|
65 |
+
def decode(
|
66 |
+
self, token_dists: Tensor, raw: bool = False
|
67 |
+
) -> Tuple[List[str], List[Tensor]]:
|
68 |
"""Decode a batch of token distributions.
|
69 |
|
70 |
Args:
|
|
|
78 |
batch_tokens = []
|
79 |
batch_probs = []
|
80 |
for dist in token_dists:
|
81 |
+
probs, ids = dist.max(-1)
|
82 |
if not raw:
|
83 |
probs, ids = self._filter(probs, ids)
|
84 |
tokens = self._ids2tok(ids, not raw)
|
|
|
88 |
|
89 |
|
90 |
class Tokenizer(BaseTokenizer):
|
91 |
+
BOS = "[B]"
|
92 |
+
EOS = "[E]"
|
93 |
+
PAD = "[P]"
|
94 |
|
95 |
def __init__(self, charset: str) -> None:
|
96 |
specials_first = (self.EOS,)
|
97 |
specials_last = (self.BOS, self.PAD)
|
98 |
super().__init__(charset, specials_first, specials_last)
|
99 |
+
self.eos_id, self.bos_id, self.pad_id = [
|
100 |
+
self._stoi[s] for s in specials_first + specials_last
|
101 |
+
]
|
102 |
+
|
103 |
+
def encode(
|
104 |
+
self, labels: List[str], device: Optional[torch.device] = None
|
105 |
+
) -> Tensor:
|
106 |
+
batch = [
|
107 |
+
torch.as_tensor(
|
108 |
+
[self.bos_id] + self._tok2ids(y) + [self.eos_id],
|
109 |
+
dtype=torch.long,
|
110 |
+
device=device,
|
111 |
+
)
|
112 |
+
for y in labels
|
113 |
+
]
|
114 |
return pad_sequence(batch, batch_first=True, padding_value=self.pad_id)
|
115 |
|
116 |
def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]:
|
|
|
118 |
try:
|
119 |
eos_idx = ids.index(self.eos_id)
|
120 |
except ValueError:
|
121 |
+
eos_idx = len(ids)
|
|
|
122 |
ids = ids[:eos_idx]
|
123 |
+
probs = probs[: eos_idx + 1]
|
124 |
return probs, ids
|
125 |
|
126 |
|
127 |
class CTCTokenizer(BaseTokenizer):
|
128 |
+
BLANK = "[B]"
|
129 |
|
130 |
def __init__(self, charset: str) -> None:
|
|
|
131 |
super().__init__(charset, specials_first=(self.BLANK,))
|
132 |
self.blank_id = self._stoi[self.BLANK]
|
133 |
|
134 |
+
def encode(
|
135 |
+
self, labels: List[str], device: Optional[torch.device] = None
|
136 |
+
) -> Tensor:
|
137 |
+
batch = [
|
138 |
+
torch.as_tensor(self._tok2ids(y), dtype=torch.long, device=device)
|
139 |
+
for y in labels
|
140 |
+
]
|
141 |
return pad_sequence(batch, batch_first=True, padding_value=self.blank_id)
|
142 |
|
143 |
def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]:
|
144 |
+
ids = list(zip(*groupby(ids.tolist())))[0]
|
145 |
+
ids = [x for x in ids if x != self.blank_id]
|
146 |
+
return probs, ids
|
|
|
|