File size: 4,107 Bytes
8ed06e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import time
from threading import Thread

import gradio as gr

import spaces
import torch
from PIL import Image
from transformers import (
    AutoProcessor,
    MllamaForConditionalGeneration,
    TextIteratorStreamer,
)

# Constants
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
CHECKPOINT = "toandev/Viet-Receipt-Llama-3.2-11B-Vision-Instruct"

# Model initialization
model = MllamaForConditionalGeneration.from_pretrained(
    CHECKPOINT, torch_dtype=torch.bfloat16
).to(DEVICE)
processor = AutoProcessor.from_pretrained(CHECKPOINT)


def process_chat_history(history):
    messages = []
    images = []

    for i, msg in enumerate(history):
        if isinstance(msg[0], tuple):
            messages.extend(
                [
                    {
                        "role": "user",
                        "content": [
                            {"type": "text", "text": history[i + 1][0]},
                            {"type": "image"},
                        ],
                    },
                    {
                        "role": "assistant",
                        "content": [{"type": "text", "text": history[i + 1][1]}],
                    },
                ]
            )
            images.append(Image.open(msg[0][0]).convert("RGB"))
        elif isinstance(history[i - 1], tuple) and isinstance(msg[0], str):
            continue
        elif isinstance(history[i - 1][0], str) and isinstance(msg[0], str):
            messages.extend(
                [
                    {"role": "user", "content": [{"type": "text", "text": msg[0]}]},
                    {
                        "role": "assistant",
                        "content": [{"type": "text", "text": msg[1]}],
                    },
                ]
            )

    return messages, images


@spaces.GPU
def bot_streaming(message, history, max_new_tokens=250):
    text = message["text"]
    messages, images = process_chat_history(history)

    # Handle current message
    if len(message["files"]) == 1:
        image = (
            Image.open(message["files"][0])
            if isinstance(message["files"][0], str)
            else Image.open(message["files"][0]["path"])
        ).convert("RGB")
        images.append(image)
        messages.append(
            {
                "role": "user",
                "content": [{"type": "text", "text": text}, {"type": "image"}],
            }
        )
    else:
        messages.append({"role": "user", "content": [{"type": "text", "text": text}]})

    # Process inputs
    texts = processor.apply_chat_template(messages, add_generation_prompt=True)
    inputs = (
        processor(text=texts, images=images, return_tensors="pt")
        if images
        else processor(text=texts, return_tensors="pt")
    ).to(DEVICE)

    # Setup streaming
    streamer = TextIteratorStreamer(
        processor, skip_special_tokens=True, skip_prompt=True
    )
    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    buffer = ""
    for new_text in streamer:
        buffer += new_text
        time.sleep(0.01)
        yield buffer

    return "Hello"


demo = gr.ChatInterface(
    fn=bot_streaming,
    textbox=gr.MultimodalTextbox(),
    additional_inputs=[
        gr.Slider(
            minimum=10,
            maximum=500,
            value=250,
            step=10,
            label="Maximum number of new tokens to generate",
        )
    ],
    examples=[
        [
            {
                "text": "Hóa đơn được in tại nhà hàng nào?",
                "files": ["./examples/01.jpg"],
            },
            200,
        ],
        [
            {
                "text": "Mô tả thông tin hóa đơn một cách chi tiết.",
                "files": ["./examples/02.jpg"],
            },
            500,
        ],
    ],
    cache_examples=False,
    stop_btn="Stop",
    fill_height=True,
    multimodal=True,
)

if __name__ == "__main__":
    demo.launch(debug=True)