File size: 32,498 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 |
# Copyright 2020 Nagoya University (Tomoki Hayashi)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Fastspeech2 related modules for ESPnet2."""
import logging
from typing import Dict
from typing import Sequence
from typing import Tuple
import torch
import torch.nn.functional as F
from typeguard import check_argument_types
from espnet.nets.pytorch_backend.conformer.encoder import (
Encoder as ConformerEncoder, # noqa: H301
)
from espnet.nets.pytorch_backend.fastspeech.duration_predictor import DurationPredictor
from espnet.nets.pytorch_backend.fastspeech.duration_predictor import (
DurationPredictorLoss, # noqa: H301
)
from espnet.nets.pytorch_backend.fastspeech.length_regulator import LengthRegulator
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask
from espnet.nets.pytorch_backend.tacotron2.decoder import Postnet
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding
from espnet.nets.pytorch_backend.transformer.embedding import ScaledPositionalEncoding
from espnet.nets.pytorch_backend.transformer.encoder import (
Encoder as TransformerEncoder, # noqa: H301
)
from espnet2.torch_utils.device_funcs import force_gatherable
from espnet2.torch_utils.initialize import initialize
from espnet2.tts.abs_tts import AbsTTS
from espnet2.tts.gst.style_encoder import StyleEncoder
from espnet2.tts.variance_predictor import VariancePredictor
class FastSpeech2(AbsTTS):
"""FastSpeech2 module.
This is a module of FastSpeech2 described in `FastSpeech 2: Fast and
High-Quality End-to-End Text to Speech`_. Instead of quantized pitch and
energy, we use token-averaged value introduced in `FastPitch: Parallel
Text-to-speech with Pitch Prediction`_.
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`:
https://arxiv.org/abs/2006.04558
.. _`FastPitch: Parallel Text-to-speech with Pitch Prediction`:
https://arxiv.org/abs/2006.06873
"""
def __init__(
self,
# network structure related
idim: int,
odim: int,
adim: int = 384,
aheads: int = 4,
elayers: int = 6,
eunits: int = 1536,
dlayers: int = 6,
dunits: int = 1536,
postnet_layers: int = 5,
postnet_chans: int = 512,
postnet_filts: int = 5,
positionwise_layer_type: str = "conv1d",
positionwise_conv_kernel_size: int = 1,
use_scaled_pos_enc: bool = True,
use_batch_norm: bool = True,
encoder_normalize_before: bool = True,
decoder_normalize_before: bool = True,
encoder_concat_after: bool = False,
decoder_concat_after: bool = False,
reduction_factor: int = 1,
encoder_type: str = "transformer",
decoder_type: str = "transformer",
# only for conformer
conformer_rel_pos_type: str = "legacy",
conformer_pos_enc_layer_type: str = "rel_pos",
conformer_self_attn_layer_type: str = "rel_selfattn",
conformer_activation_type: str = "swish",
use_macaron_style_in_conformer: bool = True,
use_cnn_in_conformer: bool = True,
zero_triu: bool = False,
conformer_enc_kernel_size: int = 7,
conformer_dec_kernel_size: int = 31,
# duration predictor
duration_predictor_layers: int = 2,
duration_predictor_chans: int = 384,
duration_predictor_kernel_size: int = 3,
# energy predictor
energy_predictor_layers: int = 2,
energy_predictor_chans: int = 384,
energy_predictor_kernel_size: int = 3,
energy_predictor_dropout: float = 0.5,
energy_embed_kernel_size: int = 9,
energy_embed_dropout: float = 0.5,
stop_gradient_from_energy_predictor: bool = False,
# pitch predictor
pitch_predictor_layers: int = 2,
pitch_predictor_chans: int = 384,
pitch_predictor_kernel_size: int = 3,
pitch_predictor_dropout: float = 0.5,
pitch_embed_kernel_size: int = 9,
pitch_embed_dropout: float = 0.5,
stop_gradient_from_pitch_predictor: bool = False,
# pretrained spk emb
spk_embed_dim: int = None,
spk_embed_integration_type: str = "add",
# GST
use_gst: bool = False,
gst_tokens: int = 10,
gst_heads: int = 4,
gst_conv_layers: int = 6,
gst_conv_chans_list: Sequence[int] = (32, 32, 64, 64, 128, 128),
gst_conv_kernel_size: int = 3,
gst_conv_stride: int = 2,
gst_gru_layers: int = 1,
gst_gru_units: int = 128,
# training related
transformer_enc_dropout_rate: float = 0.1,
transformer_enc_positional_dropout_rate: float = 0.1,
transformer_enc_attn_dropout_rate: float = 0.1,
transformer_dec_dropout_rate: float = 0.1,
transformer_dec_positional_dropout_rate: float = 0.1,
transformer_dec_attn_dropout_rate: float = 0.1,
duration_predictor_dropout_rate: float = 0.1,
postnet_dropout_rate: float = 0.5,
init_type: str = "xavier_uniform",
init_enc_alpha: float = 1.0,
init_dec_alpha: float = 1.0,
use_masking: bool = False,
use_weighted_masking: bool = False,
):
"""Initialize FastSpeech2 module."""
assert check_argument_types()
super().__init__()
# store hyperparameters
self.idim = idim
self.odim = odim
self.eos = idim - 1
self.reduction_factor = reduction_factor
self.encoder_type = encoder_type
self.decoder_type = decoder_type
self.stop_gradient_from_pitch_predictor = stop_gradient_from_pitch_predictor
self.stop_gradient_from_energy_predictor = stop_gradient_from_energy_predictor
self.use_scaled_pos_enc = use_scaled_pos_enc
self.use_gst = use_gst
self.spk_embed_dim = spk_embed_dim
if self.spk_embed_dim is not None:
self.spk_embed_integration_type = spk_embed_integration_type
# use idx 0 as padding idx
self.padding_idx = 0
# get positional encoding class
pos_enc_class = (
ScaledPositionalEncoding if self.use_scaled_pos_enc else PositionalEncoding
)
# check relative positional encoding compatibility
if "conformer" in [encoder_type, decoder_type]:
if conformer_rel_pos_type == "legacy":
if conformer_pos_enc_layer_type == "rel_pos":
conformer_pos_enc_layer_type = "legacy_rel_pos"
logging.warning(
"Fallback to conformer_pos_enc_layer_type = 'legacy_rel_pos' "
"due to the compatibility. If you want to use the new one, "
"please use conformer_pos_enc_layer_type = 'latest'."
)
if conformer_self_attn_layer_type == "rel_selfattn":
conformer_self_attn_layer_type = "legacy_rel_selfattn"
logging.warning(
"Fallback to "
"conformer_self_attn_layer_type = 'legacy_rel_selfattn' "
"due to the compatibility. If you want to use the new one, "
"please use conformer_pos_enc_layer_type = 'latest'."
)
elif conformer_rel_pos_type == "latest":
assert conformer_pos_enc_layer_type != "legacy_rel_pos"
assert conformer_self_attn_layer_type != "legacy_rel_selfattn"
else:
raise ValueError(f"Unknown rel_pos_type: {conformer_rel_pos_type}")
# define encoder
encoder_input_layer = torch.nn.Embedding(
num_embeddings=idim, embedding_dim=adim, padding_idx=self.padding_idx
)
if encoder_type == "transformer":
self.encoder = TransformerEncoder(
idim=idim,
attention_dim=adim,
attention_heads=aheads,
linear_units=eunits,
num_blocks=elayers,
input_layer=encoder_input_layer,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
pos_enc_class=pos_enc_class,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
)
elif encoder_type == "conformer":
self.encoder = ConformerEncoder(
idim=idim,
attention_dim=adim,
attention_heads=aheads,
linear_units=eunits,
num_blocks=elayers,
input_layer=encoder_input_layer,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
pos_enc_layer_type=conformer_pos_enc_layer_type,
selfattention_layer_type=conformer_self_attn_layer_type,
activation_type=conformer_activation_type,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_enc_kernel_size,
zero_triu=zero_triu,
)
else:
raise ValueError(f"{encoder_type} is not supported.")
# define GST
if self.use_gst:
self.gst = StyleEncoder(
idim=odim, # the input is mel-spectrogram
gst_tokens=gst_tokens,
gst_token_dim=adim,
gst_heads=gst_heads,
conv_layers=gst_conv_layers,
conv_chans_list=gst_conv_chans_list,
conv_kernel_size=gst_conv_kernel_size,
conv_stride=gst_conv_stride,
gru_layers=gst_gru_layers,
gru_units=gst_gru_units,
)
# define additional projection for speaker embedding
if self.spk_embed_dim is not None:
if self.spk_embed_integration_type == "add":
self.projection = torch.nn.Linear(self.spk_embed_dim, adim)
else:
self.projection = torch.nn.Linear(adim + self.spk_embed_dim, adim)
# define duration predictor
self.duration_predictor = DurationPredictor(
idim=adim,
n_layers=duration_predictor_layers,
n_chans=duration_predictor_chans,
kernel_size=duration_predictor_kernel_size,
dropout_rate=duration_predictor_dropout_rate,
)
# define pitch predictor
self.pitch_predictor = VariancePredictor(
idim=adim,
n_layers=pitch_predictor_layers,
n_chans=pitch_predictor_chans,
kernel_size=pitch_predictor_kernel_size,
dropout_rate=pitch_predictor_dropout,
)
# NOTE(kan-bayashi): We use continuous pitch + FastPitch style avg
self.pitch_embed = torch.nn.Sequential(
torch.nn.Conv1d(
in_channels=1,
out_channels=adim,
kernel_size=pitch_embed_kernel_size,
padding=(pitch_embed_kernel_size - 1) // 2,
),
torch.nn.Dropout(pitch_embed_dropout),
)
# define energy predictor
self.energy_predictor = VariancePredictor(
idim=adim,
n_layers=energy_predictor_layers,
n_chans=energy_predictor_chans,
kernel_size=energy_predictor_kernel_size,
dropout_rate=energy_predictor_dropout,
)
# NOTE(kan-bayashi): We use continuous enegy + FastPitch style avg
self.energy_embed = torch.nn.Sequential(
torch.nn.Conv1d(
in_channels=1,
out_channels=adim,
kernel_size=energy_embed_kernel_size,
padding=(energy_embed_kernel_size - 1) // 2,
),
torch.nn.Dropout(energy_embed_dropout),
)
# define length regulator
self.length_regulator = LengthRegulator()
# define decoder
# NOTE: we use encoder as decoder
# because fastspeech's decoder is the same as encoder
if decoder_type == "transformer":
self.decoder = TransformerEncoder(
idim=0,
attention_dim=adim,
attention_heads=aheads,
linear_units=dunits,
num_blocks=dlayers,
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
pos_enc_class=pos_enc_class,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
)
elif decoder_type == "conformer":
self.decoder = ConformerEncoder(
idim=0,
attention_dim=adim,
attention_heads=aheads,
linear_units=dunits,
num_blocks=dlayers,
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
pos_enc_layer_type=conformer_pos_enc_layer_type,
selfattention_layer_type=conformer_self_attn_layer_type,
activation_type=conformer_activation_type,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_dec_kernel_size,
)
else:
raise ValueError(f"{decoder_type} is not supported.")
# define final projection
self.feat_out = torch.nn.Linear(adim, odim * reduction_factor)
# define postnet
self.postnet = (
None
if postnet_layers == 0
else Postnet(
idim=idim,
odim=odim,
n_layers=postnet_layers,
n_chans=postnet_chans,
n_filts=postnet_filts,
use_batch_norm=use_batch_norm,
dropout_rate=postnet_dropout_rate,
)
)
# initialize parameters
self._reset_parameters(
init_type=init_type,
init_enc_alpha=init_enc_alpha,
init_dec_alpha=init_dec_alpha,
)
# define criterions
self.criterion = FastSpeech2Loss(
use_masking=use_masking, use_weighted_masking=use_weighted_masking
)
def forward(
self,
text: torch.Tensor,
text_lengths: torch.Tensor,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
durations: torch.Tensor,
durations_lengths: torch.Tensor,
pitch: torch.Tensor,
pitch_lengths: torch.Tensor,
energy: torch.Tensor,
energy_lengths: torch.Tensor,
spembs: torch.Tensor = None,
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]:
"""Calculate forward propagation.
Args:
text (LongTensor): Batch of padded token ids (B, Tmax).
text_lengths (LongTensor): Batch of lengths of each input (B,).
speech (Tensor): Batch of padded target features (B, Lmax, odim).
speech_lengths (LongTensor): Batch of the lengths of each target (B,).
durations (LongTensor): Batch of padded durations (B, Tmax + 1).
durations_lengths (LongTensor): Batch of duration lengths (B, Tmax + 1).
pitch (Tensor): Batch of padded token-averaged pitch (B, Tmax + 1, 1).
pitch_lengths (LongTensor): Batch of pitch lengths (B, Tmax + 1).
energy (Tensor): Batch of padded token-averaged energy (B, Tmax + 1, 1).
energy_lengths (LongTensor): Batch of energy lengths (B, Tmax + 1).
spembs (Tensor, optional): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Loss scalar value.
Dict: Statistics to be monitored.
Tensor: Weight value.
"""
text = text[:, : text_lengths.max()] # for data-parallel
speech = speech[:, : speech_lengths.max()] # for data-parallel
durations = durations[:, : durations_lengths.max()] # for data-parallel
pitch = pitch[:, : pitch_lengths.max()] # for data-parallel
energy = energy[:, : energy_lengths.max()] # for data-parallel
batch_size = text.size(0)
# Add eos at the last of sequence
xs = F.pad(text, [0, 1], "constant", self.padding_idx)
for i, l in enumerate(text_lengths):
xs[i, l] = self.eos
ilens = text_lengths + 1
ys, ds, ps, es = speech, durations, pitch, energy
olens = speech_lengths
# forward propagation
before_outs, after_outs, d_outs, p_outs, e_outs = self._forward(
xs, ilens, ys, olens, ds, ps, es, spembs=spembs, is_inference=False
)
# modify mod part of groundtruth
if self.reduction_factor > 1:
olens = olens.new([olen - olen % self.reduction_factor for olen in olens])
max_olen = max(olens)
ys = ys[:, :max_olen]
# calculate loss
if self.postnet is None:
after_outs = None
# calculate loss
l1_loss, duration_loss, pitch_loss, energy_loss = self.criterion(
after_outs=after_outs,
before_outs=before_outs,
d_outs=d_outs,
p_outs=p_outs,
e_outs=e_outs,
ys=ys,
ds=ds,
ps=ps,
es=es,
ilens=ilens,
olens=olens,
)
loss = l1_loss + duration_loss + pitch_loss + energy_loss
stats = dict(
l1_loss=l1_loss.item(),
duration_loss=duration_loss.item(),
pitch_loss=pitch_loss.item(),
energy_loss=energy_loss.item(),
loss=loss.item(),
)
# report extra information
if self.encoder_type == "transformer" and self.use_scaled_pos_enc:
stats.update(
encoder_alpha=self.encoder.embed[-1].alpha.data.item(),
)
if self.decoder_type == "transformer" and self.use_scaled_pos_enc:
stats.update(
decoder_alpha=self.decoder.embed[-1].alpha.data.item(),
)
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device)
return loss, stats, weight
def _forward(
self,
xs: torch.Tensor,
ilens: torch.Tensor,
ys: torch.Tensor = None,
olens: torch.Tensor = None,
ds: torch.Tensor = None,
ps: torch.Tensor = None,
es: torch.Tensor = None,
spembs: torch.Tensor = None,
is_inference: bool = False,
alpha: float = 1.0,
) -> Sequence[torch.Tensor]:
# forward encoder
x_masks = self._source_mask(ilens)
hs, _ = self.encoder(xs, x_masks) # (B, Tmax, adim)
# integrate with GST
if self.use_gst:
style_embs = self.gst(ys)
hs = hs + style_embs.unsqueeze(1)
# integrate speaker embedding
if self.spk_embed_dim is not None:
hs = self._integrate_with_spk_embed(hs, spembs)
# forward duration predictor and variance predictors
d_masks = make_pad_mask(ilens).to(xs.device)
if self.stop_gradient_from_pitch_predictor:
p_outs = self.pitch_predictor(hs.detach(), d_masks.unsqueeze(-1))
else:
p_outs = self.pitch_predictor(hs, d_masks.unsqueeze(-1))
if self.stop_gradient_from_energy_predictor:
e_outs = self.energy_predictor(hs.detach(), d_masks.unsqueeze(-1))
else:
e_outs = self.energy_predictor(hs, d_masks.unsqueeze(-1))
if is_inference:
d_outs = self.duration_predictor.inference(hs, d_masks) # (B, Tmax)
# use prediction in inference
p_embs = self.pitch_embed(p_outs.transpose(1, 2)).transpose(1, 2)
e_embs = self.energy_embed(e_outs.transpose(1, 2)).transpose(1, 2)
hs = hs + e_embs + p_embs
hs = self.length_regulator(hs, d_outs, alpha) # (B, Lmax, adim)
else:
d_outs = self.duration_predictor(hs, d_masks)
# use groundtruth in training
p_embs = self.pitch_embed(ps.transpose(1, 2)).transpose(1, 2)
e_embs = self.energy_embed(es.transpose(1, 2)).transpose(1, 2)
hs = hs + e_embs + p_embs
hs = self.length_regulator(hs, ds) # (B, Lmax, adim)
# forward decoder
if olens is not None and not is_inference:
if self.reduction_factor > 1:
olens_in = olens.new([olen // self.reduction_factor for olen in olens])
else:
olens_in = olens
h_masks = self._source_mask(olens_in)
else:
h_masks = None
zs, _ = self.decoder(hs, h_masks) # (B, Lmax, adim)
before_outs = self.feat_out(zs).view(
zs.size(0), -1, self.odim
) # (B, Lmax, odim)
# postnet -> (B, Lmax//r * r, odim)
if self.postnet is None:
after_outs = before_outs
else:
after_outs = before_outs + self.postnet(
before_outs.transpose(1, 2)
).transpose(1, 2)
return before_outs, after_outs, d_outs, p_outs, e_outs
def inference(
self,
text: torch.Tensor,
speech: torch.Tensor = None,
spembs: torch.Tensor = None,
durations: torch.Tensor = None,
pitch: torch.Tensor = None,
energy: torch.Tensor = None,
alpha: float = 1.0,
use_teacher_forcing: bool = False,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
"""Generate the sequence of features given the sequences of characters.
Args:
text (LongTensor): Input sequence of characters (T,).
speech (Tensor, optional): Feature sequence to extract style (N, idim).
spembs (Tensor, optional): Speaker embedding vector (spk_embed_dim,).
durations (LongTensor, optional): Groundtruth of duration (T + 1,).
pitch (Tensor, optional): Groundtruth of token-averaged pitch (T + 1, 1).
energy (Tensor, optional): Groundtruth of token-averaged energy (T + 1, 1).
alpha (float, optional): Alpha to control the speed.
use_teacher_forcing (bool, optional): Whether to use teacher forcing.
If true, groundtruth of duration, pitch and energy will be used.
Returns:
Tensor: Output sequence of features (L, odim).
None: Dummy for compatibility.
None: Dummy for compatibility.
"""
x, y = text, speech
spemb, d, p, e = spembs, durations, pitch, energy
# add eos at the last of sequence
x = F.pad(x, [0, 1], "constant", self.eos)
# setup batch axis
ilens = torch.tensor([x.shape[0]], dtype=torch.long, device=x.device)
xs, ys = x.unsqueeze(0), None
if y is not None:
ys = y.unsqueeze(0)
if spemb is not None:
spembs = spemb.unsqueeze(0)
if use_teacher_forcing:
# use groundtruth of duration, pitch, and energy
ds, ps, es = d.unsqueeze(0), p.unsqueeze(0), e.unsqueeze(0)
_, outs, *_ = self._forward(
xs,
ilens,
ys,
ds=ds,
ps=ps,
es=es,
spembs=spembs,
) # (1, L, odim)
else:
_, outs, *_ = self._forward(
xs,
ilens,
ys,
spembs=spembs,
is_inference=True,
alpha=alpha,
) # (1, L, odim)
return outs[0], None, None
def _integrate_with_spk_embed(
self, hs: torch.Tensor, spembs: torch.Tensor
) -> torch.Tensor:
"""Integrate speaker embedding with hidden states.
Args:
hs (Tensor): Batch of hidden state sequences (B, Tmax, adim).
spembs (Tensor): Batch of speaker embeddings (B, spk_embed_dim).
Returns:
Tensor: Batch of integrated hidden state sequences (B, Tmax, adim).
"""
if self.spk_embed_integration_type == "add":
# apply projection and then add to hidden states
spembs = self.projection(F.normalize(spembs))
hs = hs + spembs.unsqueeze(1)
elif self.spk_embed_integration_type == "concat":
# concat hidden states with spk embeds and then apply projection
spembs = F.normalize(spembs).unsqueeze(1).expand(-1, hs.size(1), -1)
hs = self.projection(torch.cat([hs, spembs], dim=-1))
else:
raise NotImplementedError("support only add or concat.")
return hs
def _source_mask(self, ilens: torch.Tensor) -> torch.Tensor:
"""Make masks for self-attention.
Args:
ilens (LongTensor): Batch of lengths (B,).
Returns:
Tensor: Mask tensor for self-attention.
dtype=torch.uint8 in PyTorch 1.2-
dtype=torch.bool in PyTorch 1.2+ (including 1.2)
Examples:
>>> ilens = [5, 3]
>>> self._source_mask(ilens)
tensor([[[1, 1, 1, 1, 1],
[1, 1, 1, 0, 0]]], dtype=torch.uint8)
"""
x_masks = make_non_pad_mask(ilens).to(next(self.parameters()).device)
return x_masks.unsqueeze(-2)
def _reset_parameters(
self, init_type: str, init_enc_alpha: float, init_dec_alpha: float
):
# initialize parameters
if init_type != "pytorch":
initialize(self, init_type)
# initialize alpha in scaled positional encoding
if self.encoder_type == "transformer" and self.use_scaled_pos_enc:
self.encoder.embed[-1].alpha.data = torch.tensor(init_enc_alpha)
if self.decoder_type == "transformer" and self.use_scaled_pos_enc:
self.decoder.embed[-1].alpha.data = torch.tensor(init_dec_alpha)
class FastSpeech2Loss(torch.nn.Module):
"""Loss function module for FastSpeech2."""
def __init__(self, use_masking: bool = True, use_weighted_masking: bool = False):
"""Initialize feed-forward Transformer loss module.
Args:
use_masking (bool):
Whether to apply masking for padded part in loss calculation.
use_weighted_masking (bool):
Whether to weighted masking in loss calculation.
"""
assert check_argument_types()
super().__init__()
assert (use_masking != use_weighted_masking) or not use_masking
self.use_masking = use_masking
self.use_weighted_masking = use_weighted_masking
# define criterions
reduction = "none" if self.use_weighted_masking else "mean"
self.l1_criterion = torch.nn.L1Loss(reduction=reduction)
self.mse_criterion = torch.nn.MSELoss(reduction=reduction)
self.duration_criterion = DurationPredictorLoss(reduction=reduction)
def forward(
self,
after_outs: torch.Tensor,
before_outs: torch.Tensor,
d_outs: torch.Tensor,
p_outs: torch.Tensor,
e_outs: torch.Tensor,
ys: torch.Tensor,
ds: torch.Tensor,
ps: torch.Tensor,
es: torch.Tensor,
ilens: torch.Tensor,
olens: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
"""Calculate forward propagation.
Args:
after_outs (Tensor): Batch of outputs after postnets (B, Lmax, odim).
before_outs (Tensor): Batch of outputs before postnets (B, Lmax, odim).
d_outs (LongTensor): Batch of outputs of duration predictor (B, Tmax).
p_outs (Tensor): Batch of outputs of pitch predictor (B, Tmax, 1).
e_outs (Tensor): Batch of outputs of energy predictor (B, Tmax, 1).
ys (Tensor): Batch of target features (B, Lmax, odim).
ds (LongTensor): Batch of durations (B, Tmax).
ps (Tensor): Batch of target token-averaged pitch (B, Tmax, 1).
es (Tensor): Batch of target token-averaged energy (B, Tmax, 1).
ilens (LongTensor): Batch of the lengths of each input (B,).
olens (LongTensor): Batch of the lengths of each target (B,).
Returns:
Tensor: L1 loss value.
Tensor: Duration predictor loss value.
Tensor: Pitch predictor loss value.
Tensor: Energy predictor loss value.
"""
# apply mask to remove padded part
if self.use_masking:
out_masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
before_outs = before_outs.masked_select(out_masks)
if after_outs is not None:
after_outs = after_outs.masked_select(out_masks)
ys = ys.masked_select(out_masks)
duration_masks = make_non_pad_mask(ilens).to(ys.device)
d_outs = d_outs.masked_select(duration_masks)
ds = ds.masked_select(duration_masks)
pitch_masks = make_non_pad_mask(ilens).unsqueeze(-1).to(ys.device)
p_outs = p_outs.masked_select(pitch_masks)
e_outs = e_outs.masked_select(pitch_masks)
ps = ps.masked_select(pitch_masks)
es = es.masked_select(pitch_masks)
# calculate loss
l1_loss = self.l1_criterion(before_outs, ys)
if after_outs is not None:
l1_loss += self.l1_criterion(after_outs, ys)
duration_loss = self.duration_criterion(d_outs, ds)
pitch_loss = self.mse_criterion(p_outs, ps)
energy_loss = self.mse_criterion(e_outs, es)
# make weighted mask and apply it
if self.use_weighted_masking:
out_masks = make_non_pad_mask(olens).unsqueeze(-1).to(ys.device)
out_weights = out_masks.float() / out_masks.sum(dim=1, keepdim=True).float()
out_weights /= ys.size(0) * ys.size(2)
duration_masks = make_non_pad_mask(ilens).to(ys.device)
duration_weights = (
duration_masks.float() / duration_masks.sum(dim=1, keepdim=True).float()
)
duration_weights /= ds.size(0)
# apply weight
l1_loss = l1_loss.mul(out_weights).masked_select(out_masks).sum()
duration_loss = (
duration_loss.mul(duration_weights).masked_select(duration_masks).sum()
)
pitch_masks = duration_masks.unsqueeze(-1)
pitch_weights = duration_weights.unsqueeze(-1)
pitch_loss = pitch_loss.mul(pitch_weights).masked_select(pitch_masks).sum()
energy_loss = (
energy_loss.mul(pitch_weights).masked_select(pitch_masks).sum()
)
return l1_loss, duration_loss, pitch_loss, energy_loss
|