File size: 10,109 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
# Copyright 2020 Nagoya University (Tomoki Hayashi)
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0)
"""Style encoder of GST-Tacotron."""
from typeguard import check_argument_types
from typing import Sequence
import torch
from espnet.nets.pytorch_backend.transformer.attention import (
MultiHeadedAttention as BaseMultiHeadedAttention, # NOQA
)
class StyleEncoder(torch.nn.Module):
"""Style encoder.
This module is style encoder introduced in `Style Tokens: Unsupervised Style
Modeling, Control and Transfer in End-to-End Speech Synthesis`.
.. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End
Speech Synthesis`: https://arxiv.org/abs/1803.09017
Args:
idim (int, optional): Dimension of the input mel-spectrogram.
gst_tokens (int, optional): The number of GST embeddings.
gst_token_dim (int, optional): Dimension of each GST embedding.
gst_heads (int, optional): The number of heads in GST multihead attention.
conv_layers (int, optional): The number of conv layers in the reference encoder.
conv_chans_list: (Sequence[int], optional):
List of the number of channels of conv layers in the referece encoder.
conv_kernel_size (int, optional):
Kernal size of conv layers in the reference encoder.
conv_stride (int, optional):
Stride size of conv layers in the reference encoder.
gru_layers (int, optional): The number of GRU layers in the reference encoder.
gru_units (int, optional): The number of GRU units in the reference encoder.
Todo:
* Support manual weight specification in inference.
"""
def __init__(
self,
idim: int = 80,
gst_tokens: int = 10,
gst_token_dim: int = 256,
gst_heads: int = 4,
conv_layers: int = 6,
conv_chans_list: Sequence[int] = (32, 32, 64, 64, 128, 128),
conv_kernel_size: int = 3,
conv_stride: int = 2,
gru_layers: int = 1,
gru_units: int = 128,
):
"""Initilize global style encoder module."""
assert check_argument_types()
super(StyleEncoder, self).__init__()
self.ref_enc = ReferenceEncoder(
idim=idim,
conv_layers=conv_layers,
conv_chans_list=conv_chans_list,
conv_kernel_size=conv_kernel_size,
conv_stride=conv_stride,
gru_layers=gru_layers,
gru_units=gru_units,
)
self.stl = StyleTokenLayer(
ref_embed_dim=gru_units,
gst_tokens=gst_tokens,
gst_token_dim=gst_token_dim,
gst_heads=gst_heads,
)
def forward(self, speech: torch.Tensor) -> torch.Tensor:
"""Calculate forward propagation.
Args:
speech (Tensor): Batch of padded target features (B, Lmax, odim).
Returns:
Tensor: Style token embeddings (B, token_dim).
"""
ref_embs = self.ref_enc(speech)
style_embs = self.stl(ref_embs)
return style_embs
class ReferenceEncoder(torch.nn.Module):
"""Reference encoder module.
This module is refernece encoder introduced in `Style Tokens: Unsupervised Style
Modeling, Control and Transfer in End-to-End Speech Synthesis`.
.. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End
Speech Synthesis`: https://arxiv.org/abs/1803.09017
Args:
idim (int, optional): Dimension of the input mel-spectrogram.
conv_layers (int, optional): The number of conv layers in the reference encoder.
conv_chans_list: (Sequence[int], optional):
List of the number of channels of conv layers in the referece encoder.
conv_kernel_size (int, optional):
Kernal size of conv layers in the reference encoder.
conv_stride (int, optional):
Stride size of conv layers in the reference encoder.
gru_layers (int, optional): The number of GRU layers in the reference encoder.
gru_units (int, optional): The number of GRU units in the reference encoder.
"""
def __init__(
self,
idim=80,
conv_layers: int = 6,
conv_chans_list: Sequence[int] = (32, 32, 64, 64, 128, 128),
conv_kernel_size: int = 3,
conv_stride: int = 2,
gru_layers: int = 1,
gru_units: int = 128,
):
"""Initilize reference encoder module."""
assert check_argument_types()
super(ReferenceEncoder, self).__init__()
# check hyperparameters are valid
assert conv_kernel_size % 2 == 1, "kernel size must be odd."
assert (
len(conv_chans_list) == conv_layers
), "the number of conv layers and length of channels list must be the same."
convs = []
padding = (conv_kernel_size - 1) // 2
for i in range(conv_layers):
conv_in_chans = 1 if i == 0 else conv_chans_list[i - 1]
conv_out_chans = conv_chans_list[i]
convs += [
torch.nn.Conv2d(
conv_in_chans,
conv_out_chans,
kernel_size=conv_kernel_size,
stride=conv_stride,
padding=padding,
# Do not use bias due to the following batch norm
bias=False,
),
torch.nn.BatchNorm2d(conv_out_chans),
torch.nn.ReLU(inplace=True),
]
self.convs = torch.nn.Sequential(*convs)
self.conv_layers = conv_layers
self.kernel_size = conv_kernel_size
self.stride = conv_stride
self.padding = padding
# get the number of GRU input units
gru_in_units = idim
for i in range(conv_layers):
gru_in_units = (
gru_in_units - conv_kernel_size + 2 * padding
) // conv_stride + 1
gru_in_units *= conv_out_chans
self.gru = torch.nn.GRU(gru_in_units, gru_units, gru_layers, batch_first=True)
def forward(self, speech: torch.Tensor) -> torch.Tensor:
"""Calculate forward propagation.
Args:
speech (Tensor): Batch of padded target features (B, Lmax, idim).
Returns:
Tensor: Reference embedding (B, gru_units)
"""
batch_size = speech.size(0)
xs = speech.unsqueeze(1) # (B, 1, Lmax, idim)
hs = self.convs(xs).transpose(1, 2) # (B, Lmax', conv_out_chans, idim')
# NOTE(kan-bayashi): We need to care the length?
time_length = hs.size(1)
hs = hs.contiguous().view(batch_size, time_length, -1) # (B, Lmax', gru_units)
self.gru.flatten_parameters()
_, ref_embs = self.gru(hs) # (gru_layers, batch_size, gru_units)
ref_embs = ref_embs[-1] # (batch_size, gru_units)
return ref_embs
class StyleTokenLayer(torch.nn.Module):
"""Style token layer module.
This module is style token layer introduced in `Style Tokens: Unsupervised Style
Modeling, Control and Transfer in End-to-End Speech Synthesis`.
.. _`Style Tokens: Unsupervised Style Modeling, Control and Transfer in End-to-End
Speech Synthesis`: https://arxiv.org/abs/1803.09017
Args:
ref_embed_dim (int, optional): Dimension of the input reference embedding.
gst_tokens (int, optional): The number of GST embeddings.
gst_token_dim (int, optional): Dimension of each GST embedding.
gst_heads (int, optional): The number of heads in GST multihead attention.
dropout_rate (float, optional): Dropout rate in multi-head attention.
"""
def __init__(
self,
ref_embed_dim: int = 128,
gst_tokens: int = 10,
gst_token_dim: int = 256,
gst_heads: int = 4,
dropout_rate: float = 0.0,
):
"""Initilize style token layer module."""
assert check_argument_types()
super(StyleTokenLayer, self).__init__()
gst_embs = torch.randn(gst_tokens, gst_token_dim // gst_heads)
self.register_parameter("gst_embs", torch.nn.Parameter(gst_embs))
self.mha = MultiHeadedAttention(
q_dim=ref_embed_dim,
k_dim=gst_token_dim // gst_heads,
v_dim=gst_token_dim // gst_heads,
n_head=gst_heads,
n_feat=gst_token_dim,
dropout_rate=dropout_rate,
)
def forward(self, ref_embs: torch.Tensor) -> torch.Tensor:
"""Calculate forward propagation.
Args:
ref_embs (Tensor): Reference embeddings (B, ref_embed_dim).
Returns:
Tensor: Style token embeddings (B, gst_token_dim).
"""
batch_size = ref_embs.size(0)
# (num_tokens, token_dim) -> (batch_size, num_tokens, token_dim)
gst_embs = torch.tanh(self.gst_embs).unsqueeze(0).expand(batch_size, -1, -1)
# NOTE(kan-bayashi): Shoule we apply Tanh?
ref_embs = ref_embs.unsqueeze(1) # (batch_size, 1 ,ref_embed_dim)
style_embs = self.mha(ref_embs, gst_embs, gst_embs, None)
return style_embs.squeeze(1)
class MultiHeadedAttention(BaseMultiHeadedAttention):
"""Multi head attention module with different input dimension."""
def __init__(self, q_dim, k_dim, v_dim, n_head, n_feat, dropout_rate=0.0):
"""Initialize multi head attention module."""
# NOTE(kan-bayashi): Do not use super().__init__() here since we want to
# overwrite BaseMultiHeadedAttention.__init__() method.
torch.nn.Module.__init__(self)
assert n_feat % n_head == 0
# We assume d_v always equals d_k
self.d_k = n_feat // n_head
self.h = n_head
self.linear_q = torch.nn.Linear(q_dim, n_feat)
self.linear_k = torch.nn.Linear(k_dim, n_feat)
self.linear_v = torch.nn.Linear(v_dim, n_feat)
self.linear_out = torch.nn.Linear(n_feat, n_feat)
self.attn = None
self.dropout = torch.nn.Dropout(p=dropout_rate)
|