File size: 21,719 Bytes
ad16788 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 |
from typing import Sequence
import math
import torch
from torch import nn
from torch.nn import functional as F
from typeguard import check_argument_types
class VectorQuantizer(nn.Module):
"""
Reference:
[1] https://github.com/deepmind/sonnet/blob/v2/sonnet/src/nets/vqvae.py
"""
def __init__(self,
num_embeddings: int,
hidden_dim: int,
beta: float = 0.25):
super().__init__()
self.K = num_embeddings
self.D = hidden_dim
self.beta = 0.05 # beta override
self.embedding = nn.Embedding(self.K, self.D)
self.embedding.weight.data.normal_(0.8, 0.1) # override
def forward(self, latents: torch.Tensor) -> torch.Tensor:
# latents = latents.permute(0, 2, 1).contiguous() # (B, D, L) -> (B, L, D)
latents_shape = latents.shape
flat_latents = latents.view(-1, self.D) # (BL, D)
# Compute L2 distance between latents and embedding weights
dist = torch.sum(flat_latents ** 2, dim=1, keepdim=True) + \
torch.sum(self.embedding.weight ** 2, dim=1) - \
2 * torch.matmul(flat_latents, self.embedding.weight.t()) # (BL, K)
# Get the encoding that has the min distance
encoding_inds = torch.argmin(dist, dim=1) # (BL)
output_inds = encoding_inds.view(latents_shape[0], latents_shape[1]) # (B, L)
encoding_inds = encoding_inds.unsqueeze(1) # (BL, 1)
# Convert to one-hot encodings
device = latents.device
encoding_one_hot = torch.zeros(encoding_inds.size(0), self.K, device=device)
encoding_one_hot.scatter_(1, encoding_inds, 1) # (BL, K)
# Quantize the latents
# (BL, D)
quantized_latents = torch.matmul(encoding_one_hot, self.embedding.weight)
quantized_latents = quantized_latents.view(latents_shape) # (B, L, D)
# Compute the VQ Losses
commitment_loss = F.mse_loss(quantized_latents.detach(), latents)
embedding_loss = F.mse_loss(quantized_latents, latents.detach())
vq_loss = commitment_loss * self.beta + embedding_loss
# Add the residue back to the latents
quantized_latents = latents + (quantized_latents - latents).detach()
# print(output_inds)
# print(quantized_latents)
# The perplexity a useful value to track during training.
# It indicates how many codes are 'active' on average.
avg_probs = torch.mean(encoding_one_hot, dim=0)
# Exponential entropy
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
return quantized_latents, vq_loss, output_inds, self.embedding, perplexity
class ProsodyEncoder(nn.Module):
"""VQ-VAE prosody encoder module.
Args:
odim (int): Number of input channels (mel spectrogram channels).
ref_enc_conv_layers (int, optional):
The number of conv layers in the reference encoder.
ref_enc_conv_chans_list: (Sequence[int], optional):
List of the number of channels of conv layers in the referece encoder.
ref_enc_conv_kernel_size (int, optional):
Kernal size of conv layers in the reference encoder.
ref_enc_conv_stride (int, optional):
Stride size of conv layers in the reference encoder.
ref_enc_gru_layers (int, optional):
The number of GRU layers in the reference encoder.
ref_enc_gru_units (int, optional):
The number of GRU units in the reference encoder.
ref_emb_integration_type: How to integrate reference embedding.
adim (int, optional): This value is not that important.
This will not change the capacity in the information-bottleneck.
num_embeddings (int, optional): The higher this value, the higher the
capacity in the information bottleneck.
FG (int, optional): Number of hidden channels.
"""
def __init__(
self,
odim: int,
adim: int = 64,
num_embeddings: int = 10,
hidden_dim: int = 3,
beta: float = 0.25,
ref_enc_conv_layers: int = 2,
ref_enc_conv_chans_list: Sequence[int] = (32, 32),
ref_enc_conv_kernel_size: int = 3,
ref_enc_conv_stride: int = 1,
global_enc_gru_layers: int = 1,
global_enc_gru_units: int = 32,
global_emb_integration_type: str = "add",
) -> None:
assert check_argument_types()
super().__init__()
# store hyperparameters
self.global_emb_integration_type = global_emb_integration_type
padding = (ref_enc_conv_kernel_size - 1) // 2
self.ref_encoder = RefEncoder(
ref_enc_conv_layers=ref_enc_conv_layers,
ref_enc_conv_chans_list=ref_enc_conv_chans_list,
ref_enc_conv_kernel_size=ref_enc_conv_kernel_size,
ref_enc_conv_stride=ref_enc_conv_stride,
ref_enc_conv_padding=padding,
)
# get the number of ref enc output units
ref_enc_output_units = odim
for i in range(ref_enc_conv_layers):
ref_enc_output_units = (
ref_enc_output_units - ref_enc_conv_kernel_size + 2 * padding
) // ref_enc_conv_stride + 1
ref_enc_output_units *= ref_enc_conv_chans_list[-1]
self.fg_encoder = FGEncoder(
ref_enc_output_units + global_enc_gru_units,
hidden_dim=hidden_dim,
)
self.global_encoder = GlobalEncoder(
ref_enc_output_units,
global_enc_gru_layers=global_enc_gru_layers,
global_enc_gru_units=global_enc_gru_units,
)
# define a projection for the global embeddings
if self.global_emb_integration_type == "add":
self.global_projection = nn.Linear(global_enc_gru_units, adim)
else:
self.global_projection = nn.Linear(
adim + global_enc_gru_units, adim
)
self.ar_prior = ARPrior(
adim,
num_embeddings=num_embeddings,
hidden_dim=hidden_dim,
)
self.vq_layer = VectorQuantizer(num_embeddings, hidden_dim, beta)
# define a projection for the quantized fine-grained embeddings
self.qfg_projection = nn.Linear(hidden_dim, adim)
def forward(
self,
ys: torch.Tensor,
ds: torch.Tensor,
hs: torch.Tensor,
global_embs: torch.Tensor = None,
train_ar_prior: bool = False,
ar_prior_inference: bool = False,
fg_inds: torch.Tensor = None,
) -> Sequence[torch.Tensor]:
"""Calculate forward propagation.
Args:
ys (Tensor): Batch of padded target features (B, Lmax, odim).
ds (LongTensor): Batch of padded durations (B, Tmax).
hs (Tensor): Batch of phoneme embeddings (B, Tmax, D).
global_embs (Tensor, optional): Global embeddings (B, D)
Returns:
Tensor: Fine-grained quantized prosody embeddings (B, Tmax, adim).
Tensor: VQ loss.
Tensor: Global prosody embeddings (B, ref_enc_gru_units)
"""
if ys is not None:
print('generating global_embs')
ref_embs = self.ref_encoder(ys) # (B, L', ref_enc_output_units)
global_embs = self.global_encoder(ref_embs) # (B, ref_enc_gru_units)
if ar_prior_inference:
print('Using ar prior')
hs_integrated = self._integrate_with_global_embs(hs, global_embs)
qs, top_inds = self.ar_prior.inference(
hs_integrated, fg_inds, self.vq_layer.embedding
)
qs = self.qfg_projection(qs) # (B, Tmax, adim)
assert hs.size(2) == qs.size(2)
p_embs = self._integrate_with_global_embs(qs, global_embs)
assert hs.shape == p_embs.shape
return p_embs, 0, 0, 0, top_inds # (B, Tmax, adim)
# concat global embs to ref embs
global_embs_expanded = global_embs.unsqueeze(1).expand(-1, ref_embs.size(1), -1)
# (B, Tmax, D)
ref_embs_integrated = torch.cat([ref_embs, global_embs_expanded], dim=-1)
# (B, Tmax, hidden_dim)
fg_embs = self.fg_encoder(ref_embs_integrated, ds, ys.size(1))
# (B, Tmax, hidden_dim)
qs, vq_loss, inds, codebook, perplexity = self.vq_layer(fg_embs)
# Vector quantization should maintain length
assert hs.size(1) == qs.size(1)
qs = self.qfg_projection(qs) # (B, Tmax, adim)
assert hs.size(2) == qs.size(2)
p_embs = self._integrate_with_global_embs(qs, global_embs)
assert hs.shape == p_embs.shape
ar_prior_loss = 0
if train_ar_prior:
# (B, Tmax, adim)
hs_integrated = self._integrate_with_global_embs(hs, global_embs)
qs, ar_prior_loss = self.ar_prior(hs_integrated, inds, codebook)
qs = self.qfg_projection(qs) # (B, Tmax, adim)
assert hs.size(2) == qs.size(2)
p_embs = self._integrate_with_global_embs(qs, global_embs)
assert hs.shape == p_embs.shape
return p_embs, vq_loss, ar_prior_loss, perplexity, global_embs
def _integrate_with_global_embs(
self,
qs: torch.Tensor,
global_embs: torch.Tensor
) -> torch.Tensor:
"""Integrate ref embedding with spectrogram hidden states.
Args:
qs (Tensor): Batch of quantized FG embeddings (B, Tmax, adim).
global_embs (Tensor): Batch of global embeddings (B, global_enc_gru_units).
Returns:
Tensor: Batch of integrated hidden state sequences (B, Tmax, adim).
"""
if self.global_emb_integration_type == "add":
# apply projection to hidden states
global_embs = self.global_projection(global_embs)
res = qs + global_embs.unsqueeze(1)
elif self.global_emb_integration_type == "concat":
# concat hidden states with prosody embeds and then apply projection
# (B, Tmax, ref_emb_dim)
global_embs = global_embs.unsqueeze(1).expand(-1, qs.size(1), -1)
# (B, Tmax, D)
res = self.prosody_projection(torch.cat([qs, global_embs], dim=-1))
else:
raise NotImplementedError("support only add or concat.")
return res
class RefEncoder(nn.Module):
def __init__(
self,
ref_enc_conv_layers: int = 2,
ref_enc_conv_chans_list: Sequence[int] = (32, 32),
ref_enc_conv_kernel_size: int = 3,
ref_enc_conv_stride: int = 1,
ref_enc_conv_padding: int = 1,
):
"""Initilize reference encoder module."""
assert check_argument_types()
super().__init__()
# check hyperparameters are valid
assert ref_enc_conv_kernel_size % 2 == 1, "kernel size must be odd."
assert (
len(ref_enc_conv_chans_list) == ref_enc_conv_layers
), "the number of conv layers and length of channels list must be the same."
convs = []
for i in range(ref_enc_conv_layers):
conv_in_chans = 1 if i == 0 else ref_enc_conv_chans_list[i - 1]
conv_out_chans = ref_enc_conv_chans_list[i]
convs += [
nn.Conv2d(
conv_in_chans,
conv_out_chans,
kernel_size=ref_enc_conv_kernel_size,
stride=ref_enc_conv_stride,
padding=ref_enc_conv_padding,
),
nn.ReLU(inplace=True),
]
self.convs = nn.Sequential(*convs)
def forward(self, ys: torch.Tensor) -> torch.Tensor:
"""Calculate forward propagation.
Args:
ys (Tensor): Batch of padded target features (B, Lmax, odim).
Returns:
Tensor: Batch of spectrogram hiddens (B, L', ref_enc_output_units)
"""
B = ys.size(0)
ys = ys.unsqueeze(1) # (B, 1, Lmax, odim)
hs = self.convs(ys) # (B, conv_out_chans, L', odim')
hs = hs.transpose(1, 2) # (B, L', conv_out_chans, odim')
L = hs.size(1)
# (B, L', ref_enc_output_units) -> "flatten"
hs = hs.contiguous().view(B, L, -1)
return hs
class GlobalEncoder(nn.Module):
"""Module that creates a global embedding from a hidden spectrogram sequence.
Args:
"""
def __init__(
self,
ref_enc_output_units: int,
global_enc_gru_layers: int = 1,
global_enc_gru_units: int = 32,
):
super().__init__()
self.gru = torch.nn.GRU(ref_enc_output_units, global_enc_gru_units,
global_enc_gru_layers, batch_first=True)
def forward(
self,
hs: torch.Tensor,
):
"""Calculate forward propagation.
Args:
hs (Tensor): Batch of spectrogram hiddens (B, L', ref_enc_output_units).
Returns:
Tensor: Reference embedding (B, ref_enc_gru_units).
"""
self.gru.flatten_parameters()
_, global_embs = self.gru(hs) # (gru_layers, B, ref_enc_gru_units)
global_embs = global_embs[-1] # (B, ref_enc_gru_units)
return global_embs
class FGEncoder(nn.Module):
"""Spectrogram to phoneme alignment module.
Args:
"""
def __init__(
self,
input_units: int,
hidden_dim: int = 3,
):
assert check_argument_types()
super().__init__()
self.projection = nn.Sequential(
nn.Sequential(
nn.Linear(input_units, input_units // 2),
nn.ReLU(),
nn.Dropout(p=0.2),
),
nn.Sequential(
nn.Linear(input_units // 2, hidden_dim),
nn.ReLU(),
nn.Dropout(p=0.2),
)
)
def forward(
self,
hs: torch.Tensor,
ds: torch.Tensor,
Lmax: int
):
"""Calculate forward propagation.
Args:
hs (Tensor): Batch of spectrogram hiddens
(B, L', ref_enc_output_units + global_enc_gru_units).
ds (LongTensor): Batch of padded durations (B, Tmax).
Returns:
Tensor: aligned spectrogram hiddens (B, Tmax, hidden_dim).
"""
# (B, Tmax, ref_enc_output_units + global_enc_gru_units)
hs = self._align_durations(hs, ds, Lmax)
hs = self.projection(hs) # (B, Tmax, hidden_dim)
return hs
def _align_durations(self, hs, ds, Lmax):
"""Transform the spectrogram hiddens according to the ground-truth durations
so that there's only one hidden per phoneme hidden.
Args:
# (B, L', ref_enc_output_units + global_enc_gru_units)
hs (Tensor): Batch of spectrogram hidden state sequences .
ds (LongTensor): Batch of padded durations (B, Tmax)
Returns:
# (B, Tmax, ref_enc_output_units + global_enc_gru_units)
Tensor: Batch of averaged spectrogram hidden state sequences.
"""
B = hs.size(0)
L = hs.size(1)
D = hs.size(2)
Tmax = ds.size(1) # -1 if Tmax + 1
device = hs.device
hs_res = torch.zeros(
[B, Tmax, D],
device=device
) # (B, Tmax, D)
with torch.no_grad():
for b_i in range(B):
durations = ds[b_i]
multiplier = L / Lmax
i = 0
for d_i in range(Tmax):
# take into account downsampling because of conv layers
d = max(math.floor(durations[d_i].item() * multiplier), 1)
if durations[d_i].item() > 0:
hs_slice = hs[b_i, i:i + d, :] # (d, D)
hs_res[b_i, d_i, :] = torch.mean(hs_slice, 0)
i += d
hs_res.requires_grad_(hs.requires_grad)
return hs_res
class ARPrior(nn.Module):
# torch.topk(decoder_output, beam_width)
"""Autoregressive prior.
This module is inspired by the AR prior described in `Generating diverse and
natural text-to-speech samples using a quantized fine-grained VAE and
auto-regressive prosody prior`. This prior is fit in the continuous latent space.
"""
def __init__(
self,
adim: int,
num_embeddings: int = 10,
hidden_dim: int = 3,
):
assert check_argument_types()
super().__init__()
# store hyperparameters
self.adim = adim
self.hidden_dim = hidden_dim
self.num_embeddings = num_embeddings
self.qs_projection = nn.Linear(hidden_dim, adim)
self.lstm = nn.LSTMCell(
self.adim,
self.num_embeddings,
)
self.criterion = nn.NLLLoss()
def inds_to_embs(self, inds, codebook, device):
"""Returns the quantized embeddings from the codebook,
corresponding to the indices.
Args:
inds (Tensor): Batch of indices (B, Tmax, 1).
codebook (Embedding): (num_embeddings, D).
Returns:
Tensor: Quantized embeddings (B, Tmax, D).
"""
flat_inds = torch.flatten(inds).unsqueeze(1) # (BL, 1)
# Convert to one-hot encodings
encoding_one_hot = torch.zeros(
flat_inds.size(0),
self.num_embeddings,
device=device
)
encoding_one_hot.scatter_(1, flat_inds, 1) # (BL, K)
# Quantize the latents
# (BL, D)
quantized_embs = torch.matmul(encoding_one_hot, codebook.weight)
# (B, L, D)
quantized_embs = quantized_embs.view(
inds.size(0), inds.size(1), self.hidden_dim
)
return quantized_embs
def top_embeddings(self, emb_scores: torch.Tensor, codebook):
"""Returns the top quantized embeddings from the codebook using the scores.
Args:
emb_scores (Tensor): Batch of embedding scores (B, Tmax, num_embeddings).
codebook (Embedding): (num_embeddings, D).
Returns:
Tensor: Top quantized embeddings (B, Tmax, D).
Tensor: Top 3 inds (B, Tmax, 3).
"""
_, top_inds = emb_scores.topk(1, dim=-1) # (B, L, 1)
quantized_embs = self.inds_to_embs(
top_inds,
codebook,
emb_scores.device,
)
_, top3_inds = emb_scores.topk(3, dim=-1) # (B, L, 1)
return quantized_embs, top3_inds
def _forward(self, hs_ref_embs, codebook, fg_inds=None):
inds = []
scores = []
embs = []
if fg_inds is not None:
init_embs = self.inds_to_embs(fg_inds, codebook, hs_ref_embs.device)
embs = [init_emb.unsqueeze(1) for init_emb in init_embs.transpose(1, 0)]
start = fg_inds.size(1) if fg_inds is not None else 0
hidden = hs_ref_embs.new_zeros(hs_ref_embs.size(0), self.lstm.hidden_size)
cell = hs_ref_embs.new_zeros(hs_ref_embs.size(0), self.lstm.hidden_size)
for i in range(start, hs_ref_embs.size(1)):
# (B, adim)
input = hs_ref_embs[:, i]
if i != 0:
# (B, 1, adim)
qs = self.qs_projection(embs[-1])
# (B, adim)
input = hs_ref_embs[:, i] + qs.squeeze()
hidden, cell = self.lstm(input, (hidden, cell)) # (B, K)
out = hidden.unsqueeze(1) # (B, 1, K)
# (B, 1, K)
emb_scores = F.log_softmax(out, dim=2)
quantized_embs, top_inds = self.top_embeddings(emb_scores, codebook)
# (B, 1, hidden_dim)
embs.append(quantized_embs)
scores.append(emb_scores)
inds.append(top_inds)
out_embs = torch.cat(embs, dim=1) # (B, L, hidden_dim)
assert(out_embs.size(0) == hs_ref_embs.size(0))
assert(out_embs.size(1) == hs_ref_embs.size(1))
out_emb_scores = torch.cat(scores, dim=1) if start < hs_ref_embs.size(1) else scores
out_inds = torch.cat(inds, dim=1) if start < hs_ref_embs.size(1) else fg_inds
return out_embs, out_emb_scores, out_inds
def forward(self, hs_ref_embs, inds, codebook):
"""Calculate forward propagation.
Args:
hs_p_embs (Tensor): Batch of phoneme embeddings
with integrated global prosody embeddings (B, Tmax, D).
inds (Tensor): Batch of ground-truth codebook indices
(B, Tmax).
Returns:
Tensor: Batch of predicted quantized latents (B, Tmax, D).
Tensor: Cross entropy loss value.
"""
quantized_embs, emb_scores, _ = self._forward(hs_ref_embs, codebook)
emb_scores = emb_scores.permute(0, 2, 1).contiguous() # (B, num_embeddings, L)
loss = self.criterion(emb_scores, inds)
return quantized_embs, loss
def inference(self, hs_ref_embs, fg_inds, codebook):
"""Inference duration.
Args:
hs_p_embs (Tensor): Batch of phoneme embeddings
with integrated global prosody embeddings (B, Tmax, D).
Returns:
Tensor: Batch of predicted quantized latents (B, Tmax, D).
"""
# Random sampling
# fg_inds = torch.rand(hs_ref_embs.size(0), hs_ref_embs.size(1))
# fg_inds *= codebook.weight.size(0) - 1
# fg_inds = torch.round(fg_inds)
# fg_inds = fg_inds.long()
quantized_embs, _, top_inds = self._forward(hs_ref_embs, codebook, fg_inds)
return quantized_embs, top_inds
|