|
import argparse |
|
import logging |
|
from typing import Callable |
|
from typing import Collection |
|
from typing import Dict |
|
from typing import List |
|
from typing import Optional |
|
from typing import Tuple |
|
|
|
import numpy as np |
|
import torch |
|
from typeguard import check_argument_types |
|
from typeguard import check_return_type |
|
|
|
from espnet2.asr.ctc import CTC |
|
from espnet2.asr.decoder.abs_decoder import AbsDecoder |
|
from espnet2.asr.decoder.rnn_decoder import RNNDecoder |
|
from espnet2.asr.decoder.transformer_decoder import TransformerDecoder |
|
from espnet2.asr.encoder.abs_encoder import AbsEncoder |
|
from espnet2.asr.encoder.rnn_encoder import RNNEncoder |
|
from espnet2.asr.encoder.transformer_encoder import TransformerEncoder |
|
from espnet2.asr.encoder.vgg_rnn_encoder import VGGRNNEncoder |
|
from espnet2.asr.espnet_joint_model import ESPnetEnhASRModel |
|
from espnet2.asr.espnet_model import ESPnetASRModel |
|
from espnet2.asr.frontend.abs_frontend import AbsFrontend |
|
from espnet2.asr.frontend.default import DefaultFrontend |
|
from espnet2.asr.specaug.abs_specaug import AbsSpecAug |
|
from espnet2.asr.specaug.specaug import SpecAug |
|
from espnet2.enh.abs_enh import AbsEnhancement |
|
from espnet2.enh.espnet_model import ESPnetEnhancementModel |
|
from espnet2.enh.nets.beamformer_net import BeamformerNet |
|
from espnet2.enh.nets.tasnet import TasNet |
|
from espnet2.enh.nets.tf_mask_net import TFMaskingNet |
|
from espnet2.layers.abs_normalize import AbsNormalize |
|
from espnet2.layers.global_mvn import GlobalMVN |
|
from espnet2.layers.utterance_mvn import UtteranceMVN |
|
from espnet2.tasks.abs_task import AbsTask |
|
from espnet2.torch_utils.initialize import initialize |
|
from espnet2.train.class_choices import ClassChoices |
|
from espnet2.train.collate_fn import CommonCollateFn |
|
from espnet2.train.preprocessor import CommonPreprocessor_multi |
|
from espnet2.train.trainer import Trainer |
|
from espnet2.utils.get_default_kwargs import get_default_kwargs |
|
from espnet2.utils.nested_dict_action import NestedDictAction |
|
from espnet2.utils.types import int_or_none |
|
from espnet2.utils.types import str2bool |
|
from espnet2.utils.types import str_or_none |
|
|
|
enh_choices = ClassChoices( |
|
name="enh", |
|
classes=dict(tf_masking=TFMaskingNet, tasnet=TasNet, wpe_beamformer=BeamformerNet), |
|
type_check=AbsEnhancement, |
|
default="tf_masking", |
|
) |
|
frontend_choices = ClassChoices( |
|
name="frontend", |
|
classes=dict(default=DefaultFrontend), |
|
type_check=AbsFrontend, |
|
default="default", |
|
) |
|
specaug_choices = ClassChoices( |
|
name="specaug", |
|
classes=dict(specaug=SpecAug), |
|
type_check=AbsSpecAug, |
|
default=None, |
|
optional=True, |
|
) |
|
normalize_choices = ClassChoices( |
|
"normalize", |
|
classes=dict( |
|
global_mvn=GlobalMVN, |
|
utterance_mvn=UtteranceMVN, |
|
), |
|
type_check=AbsNormalize, |
|
default="utterance_mvn", |
|
optional=True, |
|
) |
|
encoder_choices = ClassChoices( |
|
"encoder", |
|
classes=dict( |
|
transformer=TransformerEncoder, |
|
vgg_rnn=VGGRNNEncoder, |
|
rnn=RNNEncoder, |
|
), |
|
type_check=AbsEncoder, |
|
default="rnn", |
|
) |
|
decoder_choices = ClassChoices( |
|
"decoder", |
|
classes=dict(transformer=TransformerDecoder, rnn=RNNDecoder), |
|
type_check=AbsDecoder, |
|
default="rnn", |
|
) |
|
|
|
MAX_REFERENCE_NUM = 100 |
|
|
|
|
|
class ASRTask(AbsTask): |
|
|
|
num_optimizers: int = 1 |
|
|
|
|
|
class_choices_list = [ |
|
|
|
enh_choices, |
|
|
|
frontend_choices, |
|
|
|
specaug_choices, |
|
|
|
normalize_choices, |
|
|
|
encoder_choices, |
|
|
|
decoder_choices, |
|
] |
|
|
|
|
|
trainer = Trainer |
|
|
|
@classmethod |
|
def add_task_arguments(cls, parser: argparse.ArgumentParser): |
|
group = parser.add_argument_group(description="Task related") |
|
|
|
|
|
|
|
required = parser.get_default("required") |
|
required += ["token_list"] |
|
|
|
group.add_argument( |
|
"--token_list", |
|
type=str_or_none, |
|
default=None, |
|
help="A text mapping int-id to token", |
|
) |
|
group.add_argument( |
|
"--init", |
|
type=lambda x: str_or_none(x.lower()), |
|
default=None, |
|
help="The initialization method", |
|
choices=[ |
|
"chainer", |
|
"xavier_uniform", |
|
"xavier_normal", |
|
"kaiming_uniform", |
|
"kaiming_normal", |
|
None, |
|
], |
|
) |
|
|
|
group.add_argument( |
|
"--input_size", |
|
type=int_or_none, |
|
default=None, |
|
help="The number of input dimension of the feature", |
|
) |
|
|
|
group.add_argument( |
|
"--ctc_conf", |
|
action=NestedDictAction, |
|
default=get_default_kwargs(CTC), |
|
help="The keyword arguments for CTC class.", |
|
) |
|
group.add_argument( |
|
"--asr_model_conf", |
|
action=NestedDictAction, |
|
default=get_default_kwargs(ESPnetASRModel), |
|
help="The keyword arguments for model class.", |
|
) |
|
|
|
group.add_argument( |
|
"--enh_model_conf", |
|
action=NestedDictAction, |
|
default=get_default_kwargs(ESPnetEnhancementModel), |
|
help="The keyword arguments for model class.", |
|
) |
|
|
|
group = parser.add_argument_group(description="Preprocess related") |
|
group.add_argument( |
|
"--use_preprocessor", |
|
type=str2bool, |
|
default=False, |
|
help="Apply preprocessing to data or not", |
|
) |
|
group.add_argument( |
|
"--token_type", |
|
type=str, |
|
default="bpe", |
|
choices=["bpe", "char", "word", "phn"], |
|
help="The text will be tokenized " "in the specified level token", |
|
) |
|
group.add_argument( |
|
"--bpemodel", |
|
type=str_or_none, |
|
default=None, |
|
help="The model file of sentencepiece", |
|
) |
|
parser.add_argument( |
|
"--non_linguistic_symbols", |
|
type=str_or_none, |
|
help="non_linguistic_symbols file path", |
|
) |
|
parser.add_argument( |
|
"--cleaner", |
|
type=str_or_none, |
|
choices=[None, "tacotron", "jaconv", "vietnamese"], |
|
default=None, |
|
help="Apply text cleaning", |
|
) |
|
parser.add_argument( |
|
"--g2p", |
|
type=str_or_none, |
|
choices=[None, "g2p_en", "pyopenjtalk", "pyopenjtalk_kana"], |
|
default=None, |
|
help="Specify g2p method if --token_type=phn", |
|
) |
|
|
|
for class_choices in cls.class_choices_list: |
|
|
|
|
|
class_choices.add_arguments(group) |
|
|
|
@classmethod |
|
def build_collate_fn( |
|
cls, args: argparse.Namespace, train: bool |
|
) -> Callable[ |
|
[Collection[Tuple[str, Dict[str, np.ndarray]]]], |
|
Tuple[List[str], Dict[str, torch.Tensor]], |
|
]: |
|
assert check_argument_types() |
|
|
|
return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1) |
|
|
|
@classmethod |
|
def build_preprocess_fn( |
|
cls, args: argparse.Namespace, train: bool |
|
) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]: |
|
assert check_argument_types() |
|
|
|
|
|
if args.use_preprocessor: |
|
retval = CommonPreprocessor_multi( |
|
train=train, |
|
token_type=args.token_type, |
|
token_list=args.token_list, |
|
bpemodel=args.bpemodel, |
|
non_linguistic_symbols=args.non_linguistic_symbols, |
|
text_name=["text_ref1", "text_ref2"], |
|
text_cleaner=args.cleaner, |
|
g2p_type=args.g2p, |
|
) |
|
else: |
|
retval = None |
|
assert check_return_type(retval) |
|
return retval |
|
|
|
@classmethod |
|
def required_data_names( |
|
cls, train: bool = True, inference: bool = False |
|
) -> Tuple[str, ...]: |
|
if not inference: |
|
retval = ("speech_mix", "speech_ref1", "text_ref1") |
|
else: |
|
|
|
retval = ("speech_mix",) |
|
return retval |
|
|
|
@classmethod |
|
def optional_data_names( |
|
cls, train: bool = True, inference: bool = False |
|
) -> Tuple[str, ...]: |
|
retval = ["dereverb_ref"] |
|
retval += ["speech_ref{}".format(n) for n in range(2, MAX_REFERENCE_NUM + 1)] |
|
retval += ["text_ref{}".format(n) for n in range(2, MAX_REFERENCE_NUM + 1)] |
|
retval += ["noise_ref{}".format(n) for n in range(1, MAX_REFERENCE_NUM + 1)] |
|
retval = tuple(retval) |
|
assert check_return_type(retval) |
|
return retval |
|
|
|
@classmethod |
|
def build_model(cls, args: argparse.Namespace) -> ESPnetEnhASRModel: |
|
assert check_argument_types() |
|
if isinstance(args.token_list, str): |
|
with open(args.token_list, encoding="utf-8") as f: |
|
token_list = [line.rstrip() for line in f] |
|
|
|
|
|
args.token_list = list(token_list) |
|
elif isinstance(args.token_list, (tuple, list)): |
|
token_list = list(args.token_list) |
|
else: |
|
raise RuntimeError("token_list must be str or list") |
|
vocab_size = len(token_list) |
|
logging.info(f"Vocabulary size: {vocab_size }") |
|
|
|
|
|
enh_model = enh_choices.get_class(args.enh)(**args.enh_conf) |
|
|
|
|
|
if args.input_size is None: |
|
|
|
frontend_class = frontend_choices.get_class(args.frontend) |
|
frontend = frontend_class(**args.frontend_conf) |
|
input_size = frontend.output_size() |
|
else: |
|
|
|
args.frontend = None |
|
args.frontend_conf = {} |
|
frontend = None |
|
input_size = args.input_size |
|
|
|
|
|
if args.specaug is not None: |
|
specaug_class = specaug_choices.get_class(args.specaug) |
|
specaug = specaug_class(**args.specaug_conf) |
|
else: |
|
specaug = None |
|
|
|
|
|
if args.normalize is not None: |
|
normalize_class = normalize_choices.get_class(args.normalize) |
|
normalize = normalize_class(**args.normalize_conf) |
|
else: |
|
normalize = None |
|
|
|
|
|
encoder_class = encoder_choices.get_class(args.encoder) |
|
encoder = encoder_class(input_size=input_size, **args.encoder_conf) |
|
|
|
|
|
decoder_class = decoder_choices.get_class(args.decoder) |
|
|
|
decoder = decoder_class( |
|
vocab_size=vocab_size, |
|
encoder_output_size=encoder.output_size(), |
|
**args.decoder_conf, |
|
) |
|
|
|
|
|
ctc = CTC( |
|
odim=vocab_size, encoder_output_sizse=encoder.output_size(), **args.ctc_conf |
|
) |
|
|
|
|
|
rnnt_decoder = None |
|
|
|
|
|
model = ESPnetEnhASRModel( |
|
vocab_size=vocab_size, |
|
enh=enh_model, |
|
frontend=frontend, |
|
specaug=specaug, |
|
normalize=normalize, |
|
encoder=encoder, |
|
decoder=decoder, |
|
ctc=ctc, |
|
rnnt_decoder=rnnt_decoder, |
|
token_list=token_list, |
|
**args.asr_model_conf, |
|
) |
|
|
|
|
|
|
|
if args.init is not None: |
|
initialize(model, args.init) |
|
|
|
assert check_return_type(model) |
|
return model |
|
|