|
""" FastESpeech """ |
|
|
|
from typing import Dict |
|
from typing import Sequence |
|
from typing import Tuple |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from typeguard import check_argument_types |
|
|
|
from espnet.nets.pytorch_backend.e2e_tts_fastspeech import ( |
|
FeedForwardTransformerLoss as FastSpeechLoss, |
|
) |
|
from espnet.nets.pytorch_backend.fastspeech.duration_predictor import DurationPredictor |
|
from espnet.nets.pytorch_backend.fastspeech.length_regulator import LengthRegulator |
|
from espnet.nets.pytorch_backend.nets_utils import make_non_pad_mask |
|
from espnet.nets.pytorch_backend.nets_utils import make_pad_mask |
|
from espnet.nets.pytorch_backend.tacotron2.decoder import Postnet |
|
from espnet.nets.pytorch_backend.transformer.embedding import PositionalEncoding |
|
from espnet.nets.pytorch_backend.transformer.embedding import ScaledPositionalEncoding |
|
from espnet.nets.pytorch_backend.transformer.encoder import ( |
|
Encoder as TransformerEncoder, |
|
) |
|
|
|
from espnet2.torch_utils.device_funcs import force_gatherable |
|
from espnet2.torch_utils.initialize import initialize |
|
from espnet2.tts.abs_tts import AbsTTS |
|
from espnet2.tts.prosody_encoder import ProsodyEncoder |
|
|
|
|
|
class FastESpeech(AbsTTS): |
|
"""FastESpeech module. |
|
|
|
This module adds a VQ-VAE prosody encoder to the FastSpeech model, and |
|
takes cues from FastSpeech 2 for training. |
|
|
|
.. _`FastSpeech: Fast, Robust and Controllable Text to Speech`: |
|
https://arxiv.org/abs/1905.09263 |
|
.. _`FastSpeech 2: Fast and High-Quality End-to-End Text to Speech`: |
|
https://arxiv.org/abs/2006.04558 |
|
|
|
Args: |
|
idim (int): Dimension of the input -> size of the phoneme vocabulary. |
|
odim (int): Dimension of the output -> dimension of the mel-spectrograms. |
|
adim (int, optional): Dimension of the phoneme embeddings, dimension of the |
|
prosody embedding, the hidden size of the self-attention, 1D convolution |
|
in the FFT block. |
|
aheads (int, optional): Number of attention heads. |
|
elayers (int, optional): Number of encoder layers/blocks. |
|
eunits (int, optional): Number of encoder hidden units |
|
-> The number of units of position-wise feed forward layer. |
|
dlayers (int, optional): Number of decoder layers/blocks. |
|
dunits (int, optional): Number of decoder hidden units |
|
-> The number of units of position-wise feed forward layer. |
|
positionwise_layer_type (str, optional): Type of position-wise feed forward |
|
layer - linear or conv1d. |
|
positionwise_conv_kernel_size (int, optional): kernel size of positionwise |
|
conv1d layer. |
|
use_scaled_pos_enc (bool, optional): |
|
Whether to use trainable scaled positional encoding. |
|
encoder_normalize_before (bool, optional): |
|
Whether to perform layer normalization before encoder block. |
|
decoder_normalize_before (bool, optional): |
|
Whether to perform layer normalization before decoder block. |
|
encoder_concat_after (bool, optional): Whether to concatenate attention |
|
layer's input and output in encoder. |
|
decoder_concat_after (bool, optional): Whether to concatenate attention |
|
layer's input and output in decoder. |
|
duration_predictor_layers (int, optional): Number of duration predictor layers. |
|
duration_predictor_chans (int, optional): Number of duration predictor channels. |
|
duration_predictor_kernel_size (int, optional): |
|
Kernel size of duration predictor. |
|
reduction_factor (int, optional): Factor to multiply with output dimension. |
|
encoder_type (str, optional): Encoder architecture type. |
|
decoder_type (str, optional): Decoder architecture type. |
|
# spk_embed_dim (int, optional): Number of speaker embedding dimensions. |
|
# spk_embed_integration_type: How to integrate speaker embedding. |
|
ref_enc_conv_layers (int, optional): |
|
The number of conv layers in the reference encoder. |
|
ref_enc_conv_chans_list: (Sequence[int], optional): |
|
List of the number of channels of conv layers in the referece encoder. |
|
ref_enc_conv_kernel_size (int, optional): |
|
Kernal size of conv layers in the reference encoder. |
|
ref_enc_conv_stride (int, optional): |
|
Stride size of conv layers in the reference encoder. |
|
ref_enc_gru_layers (int, optional): |
|
The number of GRU layers in the reference encoder. |
|
ref_enc_gru_units (int, optional): |
|
The number of GRU units in the reference encoder. |
|
ref_emb_integration_type: How to integrate reference embedding. |
|
# reduction_factor (int, optional): Reduction factor. |
|
prosody_num_embs (int, optional): The higher this value, the higher the |
|
capacity in the information bottleneck. |
|
prosody_hidden_dim (int, optional): Number of hidden channels. |
|
prosody_emb_integration_type: How to integrate prosody embedding. |
|
transformer_enc_dropout_rate (float, optional): |
|
Dropout rate in encoder except attention & positional encoding. |
|
transformer_enc_positional_dropout_rate (float, optional): |
|
Dropout rate after encoder positional encoding. |
|
transformer_enc_attn_dropout_rate (float, optional): |
|
Dropout rate in encoder self-attention module. |
|
transformer_dec_dropout_rate (float, optional): |
|
Dropout rate in decoder except attention & positional encoding. |
|
transformer_dec_positional_dropout_rate (float, optional): |
|
Dropout rate after decoder positional encoding. |
|
transformer_dec_attn_dropout_rate (float, optional): |
|
Dropout rate in decoder self-attention module. |
|
duration_predictor_dropout_rate (float, optional): |
|
Dropout rate in duration predictor. |
|
init_type (str, optional): |
|
How to initialize transformer parameters. |
|
init_enc_alpha (float, optional): |
|
Initial value of alpha in scaled pos encoding of the encoder. |
|
init_dec_alpha (float, optional): |
|
Initial value of alpha in scaled pos encoding of the decoder. |
|
use_masking (bool, optional): |
|
Whether to apply masking for padded part in loss calculation. |
|
use_weighted_masking (bool, optional): |
|
Whether to apply weighted masking in loss calculation. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
|
|
idim: int, |
|
odim: int, |
|
adim: int = 384, |
|
aheads: int = 4, |
|
elayers: int = 6, |
|
eunits: int = 1536, |
|
dlayers: int = 6, |
|
dunits: int = 1536, |
|
postnet_layers: int = 0, |
|
postnet_chans: int = 512, |
|
postnet_filts: int = 5, |
|
positionwise_layer_type: str = "conv1d", |
|
positionwise_conv_kernel_size: int = 1, |
|
use_scaled_pos_enc: bool = True, |
|
use_batch_norm: bool = True, |
|
encoder_normalize_before: bool = True, |
|
decoder_normalize_before: bool = True, |
|
encoder_concat_after: bool = False, |
|
decoder_concat_after: bool = False, |
|
duration_predictor_layers: int = 2, |
|
duration_predictor_chans: int = 384, |
|
duration_predictor_kernel_size: int = 3, |
|
reduction_factor: int = 1, |
|
encoder_type: str = "transformer", |
|
decoder_type: str = "transformer", |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ref_enc_conv_layers: int = 2, |
|
ref_enc_conv_chans_list: Sequence[int] = (32, 32), |
|
ref_enc_conv_kernel_size: int = 3, |
|
ref_enc_conv_stride: int = 1, |
|
ref_enc_gru_layers: int = 1, |
|
ref_enc_gru_units: int = 32, |
|
ref_emb_integration_type: str = "add", |
|
|
|
prosody_num_embs: int = 256, |
|
prosody_hidden_dim: int = 128, |
|
prosody_emb_integration_type: str = "add", |
|
|
|
transformer_enc_dropout_rate: float = 0.1, |
|
transformer_enc_positional_dropout_rate: float = 0.1, |
|
transformer_enc_attn_dropout_rate: float = 0.1, |
|
transformer_dec_dropout_rate: float = 0.1, |
|
transformer_dec_positional_dropout_rate: float = 0.1, |
|
transformer_dec_attn_dropout_rate: float = 0.1, |
|
duration_predictor_dropout_rate: float = 0.1, |
|
postnet_dropout_rate: float = 0.5, |
|
init_type: str = "xavier_uniform", |
|
init_enc_alpha: float = 1.0, |
|
init_dec_alpha: float = 1.0, |
|
use_masking: bool = False, |
|
use_weighted_masking: bool = False, |
|
): |
|
"""Initialize FastESpeech module.""" |
|
assert check_argument_types() |
|
super().__init__() |
|
|
|
|
|
self.idim = idim |
|
self.odim = odim |
|
self.eos = idim - 1 |
|
self.reduction_factor = reduction_factor |
|
self.encoder_type = encoder_type |
|
self.decoder_type = decoder_type |
|
self.use_scaled_pos_enc = use_scaled_pos_enc |
|
self.prosody_emb_integration_type = prosody_emb_integration_type |
|
|
|
|
|
|
|
|
|
|
|
|
|
self.padding_idx = 0 |
|
|
|
|
|
pos_enc_class = ( |
|
ScaledPositionalEncoding if self.use_scaled_pos_enc else PositionalEncoding |
|
) |
|
|
|
|
|
encoder_input_layer = torch.nn.Embedding( |
|
num_embeddings=idim, embedding_dim=adim, padding_idx=self.padding_idx |
|
) |
|
if encoder_type == "transformer": |
|
self.encoder = TransformerEncoder( |
|
idim=idim, |
|
attention_dim=adim, |
|
attention_heads=aheads, |
|
linear_units=eunits, |
|
num_blocks=elayers, |
|
input_layer=encoder_input_layer, |
|
dropout_rate=transformer_enc_dropout_rate, |
|
positional_dropout_rate=transformer_enc_positional_dropout_rate, |
|
attention_dropout_rate=transformer_enc_attn_dropout_rate, |
|
pos_enc_class=pos_enc_class, |
|
normalize_before=encoder_normalize_before, |
|
concat_after=encoder_concat_after, |
|
positionwise_layer_type=positionwise_layer_type, |
|
positionwise_conv_kernel_size=positionwise_conv_kernel_size, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
raise ValueError(f"{encoder_type} is not supported.") |
|
|
|
|
|
if self.prosody_emb_integration_type == "concat": |
|
self.prosody_projection = torch.nn.Linear( |
|
adim * 2, adim |
|
) |
|
|
|
|
|
self.prosody_encoder = ProsodyEncoder( |
|
odim, |
|
adim=adim, |
|
num_embeddings=prosody_num_embs, |
|
hidden_dim=prosody_hidden_dim, |
|
ref_enc_conv_layers=ref_enc_conv_layers, |
|
ref_enc_conv_chans_list=ref_enc_conv_chans_list, |
|
ref_enc_conv_kernel_size=ref_enc_conv_kernel_size, |
|
ref_enc_conv_stride=ref_enc_conv_stride, |
|
global_enc_gru_layers=ref_enc_gru_layers, |
|
global_enc_gru_units=ref_enc_gru_units, |
|
global_emb_integration_type=ref_emb_integration_type, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.duration_predictor = DurationPredictor( |
|
idim=adim, |
|
n_layers=duration_predictor_layers, |
|
n_chans=duration_predictor_chans, |
|
kernel_size=duration_predictor_kernel_size, |
|
dropout_rate=duration_predictor_dropout_rate, |
|
) |
|
|
|
|
|
self.length_regulator = LengthRegulator() |
|
|
|
|
|
|
|
|
|
if decoder_type == "transformer": |
|
self.decoder = TransformerEncoder( |
|
idim=0, |
|
attention_dim=adim, |
|
attention_heads=aheads, |
|
linear_units=dunits, |
|
num_blocks=dlayers, |
|
input_layer=None, |
|
dropout_rate=transformer_dec_dropout_rate, |
|
positional_dropout_rate=transformer_dec_positional_dropout_rate, |
|
attention_dropout_rate=transformer_dec_attn_dropout_rate, |
|
pos_enc_class=pos_enc_class, |
|
normalize_before=decoder_normalize_before, |
|
concat_after=decoder_concat_after, |
|
positionwise_layer_type=positionwise_layer_type, |
|
positionwise_conv_kernel_size=positionwise_conv_kernel_size, |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
else: |
|
raise ValueError(f"{decoder_type} is not supported.") |
|
|
|
|
|
self.feat_out = torch.nn.Linear(adim, odim * reduction_factor) |
|
|
|
|
|
self.postnet = ( |
|
None |
|
if postnet_layers == 0 |
|
else Postnet( |
|
idim=idim, |
|
odim=odim, |
|
n_layers=postnet_layers, |
|
n_chans=postnet_chans, |
|
n_filts=postnet_filts, |
|
use_batch_norm=use_batch_norm, |
|
dropout_rate=postnet_dropout_rate, |
|
) |
|
) |
|
|
|
|
|
self._reset_parameters( |
|
init_type=init_type, |
|
init_enc_alpha=init_enc_alpha, |
|
init_dec_alpha=init_dec_alpha, |
|
) |
|
|
|
|
|
self.criterion = FastSpeechLoss( |
|
use_masking=use_masking, use_weighted_masking=use_weighted_masking |
|
) |
|
|
|
def forward( |
|
self, |
|
text: torch.Tensor, |
|
text_lengths: torch.Tensor, |
|
speech: torch.Tensor, |
|
speech_lengths: torch.Tensor, |
|
durations: torch.Tensor, |
|
durations_lengths: torch.Tensor, |
|
spembs: torch.Tensor = None, |
|
train_ar_prior: bool = False, |
|
) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: |
|
"""Calculate forward propagation. |
|
|
|
Args: |
|
text (LongTensor): Batch of padded token ids (B, Tmax). |
|
text_lengths (LongTensor): Batch of lengths of each input (B,). |
|
speech (Tensor): Batch of padded target features (B, Lmax, odim). |
|
speech_lengths (LongTensor): Batch of the lengths of each target (B,). |
|
durations (LongTensor): Batch of padded durations (B, Tmax + 1). |
|
durations_lengths (LongTensor): Batch of duration lengths (B, Tmax + 1). |
|
spembs (Tensor, optional): Batch of speaker embeddings (B, spk_embed_dim). |
|
|
|
Returns: |
|
Tensor: Loss scalar value. |
|
Dict: Statistics to be monitored. |
|
Tensor: Weight value. |
|
|
|
""" |
|
|
|
text = text[:, : text_lengths.max()] |
|
speech = speech[:, : speech_lengths.max()] |
|
durations = durations[:, : durations_lengths.max()] |
|
|
|
batch_size = text.size(0) |
|
|
|
|
|
xs = F.pad(text, [0, 1], "constant", self.padding_idx) |
|
for i, l in enumerate(text_lengths): |
|
xs[i, l] = self.eos |
|
ilens = text_lengths + 1 |
|
|
|
ys, ds = speech, durations |
|
olens = speech_lengths |
|
|
|
|
|
before_outs, after_outs, d_outs, ref_embs, \ |
|
vq_loss, ar_prior_loss, perplexity = self._forward( |
|
xs, |
|
ilens, |
|
ys, |
|
olens, |
|
ds, |
|
spembs=spembs, |
|
is_inference=False, |
|
train_ar_prior=train_ar_prior |
|
) |
|
|
|
|
|
if self.reduction_factor > 1: |
|
olens = olens.new([olen - olen % self.reduction_factor for olen in olens]) |
|
max_olen = max(olens) |
|
ys = ys[:, :max_olen] |
|
|
|
if self.postnet is None: |
|
after_outs = None |
|
|
|
|
|
l1_loss, duration_loss = self.criterion( |
|
after_outs, before_outs, d_outs, ys, ds, ilens, olens |
|
) |
|
if train_ar_prior: |
|
loss = ar_prior_loss |
|
stats = dict( |
|
l1_loss=l1_loss.item(), |
|
duration_loss=duration_loss.item(), |
|
vq_loss=vq_loss.item(), |
|
ar_prior_loss=ar_prior_loss.item(), |
|
loss=loss.item(), |
|
perplexity=perplexity.item(), |
|
) |
|
else : |
|
loss = l1_loss + duration_loss + vq_loss |
|
stats = dict( |
|
l1_loss=l1_loss.item(), |
|
duration_loss=duration_loss.item(), |
|
vq_loss=vq_loss.item(), |
|
loss=loss.item(), |
|
perplexity=perplexity.item() |
|
) |
|
|
|
|
|
if self.encoder_type == "transformer" and self.use_scaled_pos_enc: |
|
stats.update( |
|
encoder_alpha=self.encoder.embed[-1].alpha.data.item(), |
|
) |
|
if self.decoder_type == "transformer" and self.use_scaled_pos_enc: |
|
stats.update( |
|
decoder_alpha=self.decoder.embed[-1].alpha.data.item(), |
|
) |
|
|
|
loss, stats, weight = force_gatherable((loss, stats, batch_size), loss.device) |
|
return loss, stats, weight |
|
|
|
def _forward( |
|
self, |
|
xs: torch.Tensor, |
|
ilens: torch.Tensor, |
|
ys: torch.Tensor = None, |
|
olens: torch.Tensor = None, |
|
ds: torch.Tensor = None, |
|
spembs: torch.Tensor = None, |
|
ref_embs: torch.Tensor = None, |
|
is_inference: bool = False, |
|
train_ar_prior: bool = False, |
|
ar_prior_inference: bool = False, |
|
alpha: float = 1.0, |
|
fg_inds: torch.Tensor = None, |
|
) -> Sequence[torch.Tensor]: |
|
|
|
x_masks = self._source_mask(ilens) |
|
hs, _ = self.encoder(xs, x_masks) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p_embs, vq_loss, ar_prior_loss, perplexity, ref_embs = self.prosody_encoder( |
|
ys, |
|
ds, |
|
hs, |
|
global_embs=ref_embs, |
|
train_ar_prior=train_ar_prior, |
|
ar_prior_inference=ar_prior_inference, |
|
fg_inds=fg_inds, |
|
) |
|
|
|
hs = self._integrate_with_prosody_embs(hs, p_embs) |
|
|
|
|
|
d_masks = make_pad_mask(ilens).to(xs.device) |
|
|
|
if is_inference: |
|
print('predicted durations') |
|
d_outs = self.duration_predictor.inference(hs, d_masks) |
|
hs = self.length_regulator(hs, d_outs, alpha) |
|
else: |
|
d_outs = self.duration_predictor(hs, d_masks) |
|
|
|
hs = self.length_regulator(hs, ds) |
|
|
|
|
|
if olens is not None and not is_inference: |
|
if self.reduction_factor > 1: |
|
olens_in = olens.new([olen // self.reduction_factor for olen in olens]) |
|
else: |
|
olens_in = olens |
|
h_masks = self._source_mask(olens_in) |
|
else: |
|
h_masks = None |
|
zs, _ = self.decoder(hs, h_masks) |
|
before_outs = self.feat_out(zs).view( |
|
zs.size(0), -1, self.odim |
|
) |
|
|
|
|
|
if self.postnet is None: |
|
after_outs = before_outs |
|
else: |
|
after_outs = before_outs + self.postnet( |
|
before_outs.transpose(1, 2) |
|
).transpose(1, 2) |
|
|
|
return before_outs, after_outs, d_outs, ref_embs, vq_loss, ar_prior_loss, \ |
|
perplexity |
|
|
|
def inference( |
|
self, |
|
text: torch.Tensor, |
|
speech: torch.Tensor = None, |
|
spembs: torch.Tensor = None, |
|
durations: torch.Tensor = None, |
|
ref_embs: torch.Tensor = None, |
|
alpha: float = 1.0, |
|
use_teacher_forcing: bool = False, |
|
ar_prior_inference: bool = False, |
|
fg_inds: torch.Tensor = None, |
|
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: |
|
"""Generate the sequence of features given the sequences of characters. |
|
|
|
Args: |
|
text (LongTensor): Input sequence of characters (T,). |
|
speech (Tensor, optional): Feature sequence to extract style (B, idim). |
|
spembs (Tensor, optional): Speaker embedding vector (spk_embed_dim,). |
|
durations (LongTensor, optional): Groundtruth of duration (T + 1,). |
|
ref_embs (Tensor, optional): Reference embedding vector (B, gru_units). |
|
alpha (float, optional): Alpha to control the speed. |
|
use_teacher_forcing (bool, optional): Whether to use teacher forcing. |
|
If true, groundtruth of duration will be used. |
|
|
|
Returns: |
|
Tensor: Output sequence of features (L, odim). |
|
None: Dummy for compatibility. |
|
None: Dummy for compatibility. |
|
|
|
""" |
|
x, y = text, speech |
|
spemb, d = spembs, durations |
|
|
|
|
|
x = F.pad(x, [0, 1], "constant", self.eos) |
|
|
|
|
|
ilens = torch.tensor([x.shape[0]], dtype=torch.long, device=x.device) |
|
xs, ys = x.unsqueeze(0), None |
|
if y is not None: |
|
ys = y.unsqueeze(0) |
|
if spemb is not None: |
|
spembs = spemb.unsqueeze(0) |
|
if ref_embs is not None: |
|
ref_embs = ref_embs.unsqueeze(0) |
|
|
|
if use_teacher_forcing: |
|
|
|
ds = d.unsqueeze(0) |
|
_, after_outs, _, ref_embs, _, ar_prior_loss, _ = self._forward( |
|
xs, |
|
ilens, |
|
ys, |
|
ds=ds, |
|
spembs=spembs, |
|
ref_embs=ref_embs, |
|
ar_prior_inference=ar_prior_inference, |
|
) |
|
else: |
|
_, after_outs, _, ref_embs, _, ar_prior_loss, _ = self._forward( |
|
xs, |
|
ilens, |
|
ys, |
|
spembs=spembs, |
|
ref_embs=ref_embs, |
|
is_inference=True, |
|
alpha=alpha, |
|
ar_prior_inference=ar_prior_inference, |
|
fg_inds=fg_inds, |
|
) |
|
|
|
return after_outs[0], None, None, ref_embs, ar_prior_loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _source_mask(self, ilens: torch.Tensor) -> torch.Tensor: |
|
"""Make masks for self-attention. |
|
|
|
Args: |
|
ilens (LongTensor): Batch of lengths (B,). |
|
|
|
Returns: |
|
Tensor: Mask tensor for self-attention. |
|
dtype=torch.uint8 in PyTorch 1.2- |
|
dtype=torch.bool in PyTorch 1.2+ (including 1.2) |
|
|
|
Examples: |
|
>>> ilens = [5, 3] |
|
>>> self._source_mask(ilens) |
|
tensor([[[1, 1, 1, 1, 1], |
|
[1, 1, 1, 0, 0]]], dtype=torch.uint8) |
|
|
|
""" |
|
x_masks = make_non_pad_mask(ilens).to(next(self.parameters()).device) |
|
return x_masks.unsqueeze(-2) |
|
|
|
def _integrate_with_prosody_embs( |
|
self, hs: torch.Tensor, p_embs: torch.Tensor |
|
) -> torch.Tensor: |
|
"""Integrate prosody embeddings with hidden states. |
|
|
|
Args: |
|
hs (Tensor): Batch of hidden state sequences (B, Tmax, adim). |
|
p_embs (Tensor): Batch of prosody embeddings (B, Tmax, adim). |
|
|
|
Returns: |
|
Tensor: Batch of integrated hidden state sequences (B, Tmax, adim). |
|
|
|
""" |
|
if self.prosody_emb_integration_type == "add": |
|
|
|
|
|
hs = hs + p_embs |
|
elif self.prosody_emb_integration_type == "concat": |
|
|
|
|
|
hs = self.prosody_projection(torch.cat([hs, p_embs], dim=-1)) |
|
else: |
|
raise NotImplementedError("support only add or concat.") |
|
|
|
return hs |
|
|
|
def _reset_parameters( |
|
self, init_type: str, init_enc_alpha: float, init_dec_alpha: float |
|
): |
|
|
|
if init_type != "pytorch": |
|
initialize(self, init_type) |
|
|
|
|
|
if self.encoder_type == "transformer" and self.use_scaled_pos_enc: |
|
self.encoder.embed[-1].alpha.data = torch.tensor(init_enc_alpha) |
|
if self.decoder_type == "transformer" and self.use_scaled_pos_enc: |
|
self.decoder.embed[-1].alpha.data = torch.tensor(init_dec_alpha) |
|
|