import argparse import logging from typing import Callable from typing import Collection from typing import Dict from typing import List from typing import Optional from typing import Tuple import numpy as np import torch from typeguard import check_argument_types from typeguard import check_return_type from espnet2.lm.abs_model import AbsLM from espnet2.lm.espnet_model import ESPnetLanguageModel from espnet2.lm.seq_rnn_lm import SequentialRNNLM from espnet2.lm.transformer_lm import TransformerLM from espnet2.tasks.abs_task import AbsTask from espnet2.torch_utils.initialize import initialize from espnet2.train.class_choices import ClassChoices from espnet2.train.collate_fn import CommonCollateFn from espnet2.train.preprocessor import CommonPreprocessor from espnet2.train.trainer import Trainer from espnet2.utils.get_default_kwargs import get_default_kwargs from espnet2.utils.nested_dict_action import NestedDictAction from espnet2.utils.types import str2bool from espnet2.utils.types import str_or_none lm_choices = ClassChoices( "lm", classes=dict( seq_rnn=SequentialRNNLM, transformer=TransformerLM, ), type_check=AbsLM, default="seq_rnn", ) class LMTask(AbsTask): # If you need more than one optimizers, change this value num_optimizers: int = 1 # Add variable objects configurations class_choices_list = [lm_choices] # If you need to modify train() or eval() procedures, change Trainer class here trainer = Trainer @classmethod def add_task_arguments(cls, parser: argparse.ArgumentParser): # NOTE(kamo): Use '_' instead of '-' to avoid confusion assert check_argument_types() group = parser.add_argument_group(description="Task related") # NOTE(kamo): add_arguments(..., required=True) can't be used # to provide --print_config mode. Instead of it, do as required = parser.get_default("required") required += ["token_list"] group.add_argument( "--token_list", type=str_or_none, default=None, help="A text mapping int-id to token", ) group.add_argument( "--init", type=lambda x: str_or_none(x.lower()), default=None, help="The initialization method", choices=[ "chainer", "xavier_uniform", "xavier_normal", "kaiming_uniform", "kaiming_normal", None, ], ) group.add_argument( "--model_conf", action=NestedDictAction, default=get_default_kwargs(ESPnetLanguageModel), help="The keyword arguments for model class.", ) group = parser.add_argument_group(description="Preprocess related") group.add_argument( "--use_preprocessor", type=str2bool, default=True, help="Apply preprocessing to data or not", ) group.add_argument( "--token_type", type=str, default="bpe", choices=["bpe", "char", "word"], help="", ) group.add_argument( "--bpemodel", type=str_or_none, default=None, help="The model file fo sentencepiece", ) parser.add_argument( "--non_linguistic_symbols", type=str_or_none, help="non_linguistic_symbols file path", ) parser.add_argument( "--cleaner", type=str_or_none, choices=[None, "tacotron", "jaconv", "vietnamese"], default=None, help="Apply text cleaning", ) parser.add_argument( "--g2p", type=str_or_none, choices=[None, "g2p_en", "pyopenjtalk", "pyopenjtalk_kana"], default=None, help="Specify g2p method if --token_type=phn", ) for class_choices in cls.class_choices_list: # Append -- and --_conf. # e.g. --encoder and --encoder_conf class_choices.add_arguments(group) assert check_return_type(parser) return parser @classmethod def build_collate_fn( cls, args: argparse.Namespace, train: bool ) -> Callable[ [Collection[Tuple[str, Dict[str, np.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]], ]: assert check_argument_types() return CommonCollateFn(int_pad_value=0) @classmethod def build_preprocess_fn( cls, args: argparse.Namespace, train: bool ) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]: assert check_argument_types() if args.use_preprocessor: retval = CommonPreprocessor( train=train, token_type=args.token_type, token_list=args.token_list, bpemodel=args.bpemodel, text_cleaner=args.cleaner, g2p_type=args.g2p, non_linguistic_symbols=args.non_linguistic_symbols, ) else: retval = None assert check_return_type(retval) return retval @classmethod def required_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: retval = ("text",) return retval @classmethod def optional_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: retval = () return retval @classmethod def build_model(cls, args: argparse.Namespace) -> ESPnetLanguageModel: assert check_argument_types() if isinstance(args.token_list, str): with open(args.token_list, encoding="utf-8") as f: token_list = [line.rstrip() for line in f] # "args" is saved as it is in a yaml file by BaseTask.main(). # Overwriting token_list to keep it as "portable". args.token_list = token_list.copy() elif isinstance(args.token_list, (tuple, list)): token_list = args.token_list.copy() else: raise RuntimeError("token_list must be str or dict") vocab_size = len(token_list) logging.info(f"Vocabulary size: {vocab_size }") # 1. Build LM model lm_class = lm_choices.get_class(args.lm) lm = lm_class(vocab_size=vocab_size, **args.lm_conf) # 2. Build ESPnetModel # Assume the last-id is sos_and_eos model = ESPnetLanguageModel(lm=lm, vocab_size=vocab_size, **args.model_conf) # FIXME(kamo): Should be done in model? # 3. Initialize if args.init is not None: initialize(model, args.init) assert check_return_type(model) return model