from typing import Dict from typing import Tuple import torch import torch.nn.functional as F from typeguard import check_argument_types from espnet.nets.pytorch_backend.nets_utils import make_pad_mask from espnet2.lm.abs_model import AbsLM from espnet2.torch_utils.device_funcs import force_gatherable from espnet2.train.abs_espnet_model import AbsESPnetModel class ESPnetLanguageModel(AbsESPnetModel): def __init__(self, lm: AbsLM, vocab_size: int, ignore_id: int = 0): assert check_argument_types() super().__init__() self.lm = lm self.sos = vocab_size - 1 self.eos = vocab_size - 1 # ignore_id may be assumed as 0, shared with CTC-blank symbol for ASR. self.ignore_id = ignore_id def nll( self, text: torch.Tensor, text_lengths: torch.Tensor ) -> Tuple[torch.Tensor, torch.Tensor]: batch_size = text.size(0) # For data parallel text = text[:, : text_lengths.max()] # 1. Create a sentence pair like ' w1 w2 w3' and 'w1 w2 w3 ' # text: (Batch, Length) -> x, y: (Batch, Length + 1) x = F.pad(text, [1, 0], "constant", self.eos) t = F.pad(text, [0, 1], "constant", self.ignore_id) for i, l in enumerate(text_lengths): t[i, l] = self.sos x_lengths = text_lengths + 1 # 2. Forward Language model # x: (Batch, Length) -> y: (Batch, Length, NVocab) y, _ = self.lm(x, None) # 3. Calc negative log likelihood # nll: (BxL,) nll = F.cross_entropy(y.view(-1, y.shape[-1]), t.view(-1), reduction="none") # nll: (BxL,) -> (BxL,) nll.masked_fill_(make_pad_mask(x_lengths).to(nll.device).view(-1), 0.0) # nll: (BxL,) -> (B, L) nll = nll.view(batch_size, -1) return nll, x_lengths def forward( self, text: torch.Tensor, text_lengths: torch.Tensor ) -> Tuple[torch.Tensor, Dict[str, torch.Tensor], torch.Tensor]: nll, y_lengths = self.nll(text, text_lengths) ntokens = y_lengths.sum() loss = nll.sum() / ntokens stats = dict(loss=loss.detach()) # force_gatherable: to-device and to-tensor if scalar for DataParallel loss, stats, weight = force_gatherable((loss, stats, ntokens), loss.device) return loss, stats, weight def collect_feats( self, text: torch.Tensor, text_lengths: torch.Tensor ) -> Dict[str, torch.Tensor]: return {}