from distutils.version import LooseVersion from typing import Union import torch from torch.optim.lr_scheduler import _LRScheduler from typeguard import check_argument_types from espnet2.schedulers.abs_scheduler import AbsBatchStepScheduler class WarmupLR(_LRScheduler, AbsBatchStepScheduler): """The WarmupLR scheduler This scheduler is almost same as NoamLR Scheduler except for following difference: NoamLR: lr = optimizer.lr * model_size ** -0.5 * min(step ** -0.5, step * warmup_step ** -1.5) WarmupLR: lr = optimizer.lr * warmup_step ** 0.5 * min(step ** -0.5, step * warmup_step ** -1.5) Note that the maximum lr equals to optimizer.lr in this scheduler. """ def __init__( self, optimizer: torch.optim.Optimizer, warmup_steps: Union[int, float] = 25000, last_epoch: int = -1, ): if LooseVersion(torch.__version__) < LooseVersion("1.1.0"): raise NotImplementedError(f"Require PyTorch>=1.1.0: {torch.__version__}") assert check_argument_types() self.warmup_steps = warmup_steps # __init__() must be invoked before setting field # because step() is also invoked in __init__() super().__init__(optimizer, last_epoch) def __repr__(self): return f"{self.__class__.__name__}(warmup_steps={self.warmup_steps})" def get_lr(self): step_num = self.last_epoch + 1 return [ lr * self.warmup_steps ** 0.5 * min(step_num ** -0.5, step_num * self.warmup_steps ** -1.5) for lr in self.base_lrs ]