import argparse import logging from typing import Callable from typing import Collection from typing import Dict from typing import List from typing import Optional from typing import Tuple import numpy as np import torch from typeguard import check_argument_types from typeguard import check_return_type from espnet2.asr.ctc import CTC from espnet2.asr.decoder.abs_decoder import AbsDecoder from espnet2.asr.decoder.rnn_decoder import RNNDecoder from espnet2.asr.decoder.transformer_decoder import ( DynamicConvolution2DTransformerDecoder, # noqa: H301 ) from espnet2.asr.decoder.transformer_decoder import DynamicConvolutionTransformerDecoder from espnet2.asr.decoder.transformer_decoder import ( LightweightConvolution2DTransformerDecoder, # noqa: H301 ) from espnet2.asr.decoder.transformer_decoder import ( LightweightConvolutionTransformerDecoder, # noqa: H301 ) from espnet2.asr.decoder.transformer_decoder import TransformerDecoder from espnet2.asr.encoder.abs_encoder import AbsEncoder from espnet2.asr.encoder.conformer_encoder import ConformerEncoder from espnet2.asr.encoder.rnn_encoder import RNNEncoder from espnet2.asr.encoder.transformer_encoder import TransformerEncoder from espnet2.asr.encoder.contextual_block_transformer_encoder import ( ContextualBlockTransformerEncoder, # noqa: H301 ) from espnet2.asr.encoder.vgg_rnn_encoder import VGGRNNEncoder from espnet2.asr.encoder.wav2vec2_encoder import FairSeqWav2Vec2Encoder from espnet2.asr.espnet_model import ESPnetASRModel from espnet2.asr.frontend.abs_frontend import AbsFrontend from espnet2.asr.frontend.default import DefaultFrontend from espnet2.asr.frontend.windowing import SlidingWindow from espnet2.asr.preencoder.abs_preencoder import AbsPreEncoder from espnet2.asr.preencoder.sinc import LightweightSincConvs from espnet2.asr.specaug.abs_specaug import AbsSpecAug from espnet2.asr.specaug.specaug import SpecAug from espnet2.layers.abs_normalize import AbsNormalize from espnet2.layers.global_mvn import GlobalMVN from espnet2.layers.utterance_mvn import UtteranceMVN from espnet2.tasks.abs_task import AbsTask from espnet2.torch_utils.initialize import initialize from espnet2.train.class_choices import ClassChoices from espnet2.train.collate_fn import CommonCollateFn from espnet2.train.preprocessor import CommonPreprocessor from espnet2.train.trainer import Trainer from espnet2.utils.get_default_kwargs import get_default_kwargs from espnet2.utils.nested_dict_action import NestedDictAction from espnet2.utils.types import float_or_none from espnet2.utils.types import int_or_none from espnet2.utils.types import str2bool from espnet2.utils.types import str_or_none frontend_choices = ClassChoices( name="frontend", classes=dict(default=DefaultFrontend, sliding_window=SlidingWindow), type_check=AbsFrontend, default="default", ) specaug_choices = ClassChoices( name="specaug", classes=dict(specaug=SpecAug), type_check=AbsSpecAug, default=None, optional=True, ) normalize_choices = ClassChoices( "normalize", classes=dict( global_mvn=GlobalMVN, utterance_mvn=UtteranceMVN, ), type_check=AbsNormalize, default="utterance_mvn", optional=True, ) preencoder_choices = ClassChoices( name="preencoder", classes=dict( sinc=LightweightSincConvs, ), type_check=AbsPreEncoder, default=None, optional=True, ) encoder_choices = ClassChoices( "encoder", classes=dict( conformer=ConformerEncoder, transformer=TransformerEncoder, contextual_block_transformer=ContextualBlockTransformerEncoder, vgg_rnn=VGGRNNEncoder, rnn=RNNEncoder, wav2vec2=FairSeqWav2Vec2Encoder, ), type_check=AbsEncoder, default="rnn", ) decoder_choices = ClassChoices( "decoder", classes=dict( transformer=TransformerDecoder, lightweight_conv=LightweightConvolutionTransformerDecoder, lightweight_conv2d=LightweightConvolution2DTransformerDecoder, dynamic_conv=DynamicConvolutionTransformerDecoder, dynamic_conv2d=DynamicConvolution2DTransformerDecoder, rnn=RNNDecoder, ), type_check=AbsDecoder, default="rnn", ) class ASRTask(AbsTask): # If you need more than one optimizers, change this value num_optimizers: int = 1 # Add variable objects configurations class_choices_list = [ # --frontend and --frontend_conf frontend_choices, # --specaug and --specaug_conf specaug_choices, # --normalize and --normalize_conf normalize_choices, # --preencoder and --preencoder_conf preencoder_choices, # --encoder and --encoder_conf encoder_choices, # --decoder and --decoder_conf decoder_choices, ] # If you need to modify train() or eval() procedures, change Trainer class here trainer = Trainer @classmethod def add_task_arguments(cls, parser: argparse.ArgumentParser): group = parser.add_argument_group(description="Task related") # NOTE(kamo): add_arguments(..., required=True) can't be used # to provide --print_config mode. Instead of it, do as required = parser.get_default("required") required += ["token_list"] group.add_argument( "--token_list", type=str_or_none, default=None, help="A text mapping int-id to token", ) group.add_argument( "--init", type=lambda x: str_or_none(x.lower()), default=None, help="The initialization method", choices=[ "chainer", "xavier_uniform", "xavier_normal", "kaiming_uniform", "kaiming_normal", None, ], ) group.add_argument( "--input_size", type=int_or_none, default=None, help="The number of input dimension of the feature", ) group.add_argument( "--ctc_conf", action=NestedDictAction, default=get_default_kwargs(CTC), help="The keyword arguments for CTC class.", ) group.add_argument( "--model_conf", action=NestedDictAction, default=get_default_kwargs(ESPnetASRModel), help="The keyword arguments for model class.", ) group = parser.add_argument_group(description="Preprocess related") group.add_argument( "--use_preprocessor", type=str2bool, default=True, help="Apply preprocessing to data or not", ) group.add_argument( "--token_type", type=str, default="bpe", choices=["bpe", "char", "word", "phn"], help="The text will be tokenized " "in the specified level token", ) group.add_argument( "--bpemodel", type=str_or_none, default=None, help="The model file of sentencepiece", ) parser.add_argument( "--non_linguistic_symbols", type=str_or_none, help="non_linguistic_symbols file path", ) parser.add_argument( "--cleaner", type=str_or_none, choices=[None, "tacotron", "jaconv", "vietnamese"], default=None, help="Apply text cleaning", ) parser.add_argument( "--g2p", type=str_or_none, choices=[None, "g2p_en", "pyopenjtalk", "pyopenjtalk_kana"], default=None, help="Specify g2p method if --token_type=phn", ) parser.add_argument( "--speech_volume_normalize", type=float_or_none, default=None, help="Scale the maximum amplitude to the given value.", ) parser.add_argument( "--rir_scp", type=str_or_none, default=None, help="The file path of rir scp file.", ) parser.add_argument( "--rir_apply_prob", type=float, default=1.0, help="THe probability for applying RIR convolution.", ) parser.add_argument( "--noise_scp", type=str_or_none, default=None, help="The file path of noise scp file.", ) parser.add_argument( "--noise_apply_prob", type=float, default=1.0, help="The probability applying Noise adding.", ) parser.add_argument( "--noise_db_range", type=str, default="13_15", help="The range of noise decibel level.", ) for class_choices in cls.class_choices_list: # Append -- and --_conf. # e.g. --encoder and --encoder_conf class_choices.add_arguments(group) @classmethod def build_collate_fn( cls, args: argparse.Namespace, train: bool ) -> Callable[ [Collection[Tuple[str, Dict[str, np.ndarray]]]], Tuple[List[str], Dict[str, torch.Tensor]], ]: assert check_argument_types() # NOTE(kamo): int value = 0 is reserved by CTC-blank symbol return CommonCollateFn(float_pad_value=0.0, int_pad_value=-1) @classmethod def build_preprocess_fn( cls, args: argparse.Namespace, train: bool ) -> Optional[Callable[[str, Dict[str, np.array]], Dict[str, np.ndarray]]]: assert check_argument_types() if args.use_preprocessor: retval = CommonPreprocessor( train=train, token_type=args.token_type, token_list=args.token_list, bpemodel=args.bpemodel, non_linguistic_symbols=args.non_linguistic_symbols, text_cleaner=args.cleaner, g2p_type=args.g2p, # NOTE(kamo): Check attribute existence for backward compatibility rir_scp=args.rir_scp if hasattr(args, "rir_scp") else None, rir_apply_prob=args.rir_apply_prob if hasattr(args, "rir_apply_prob") else 1.0, noise_scp=args.noise_scp if hasattr(args, "noise_scp") else None, noise_apply_prob=args.noise_apply_prob if hasattr(args, "noise_apply_prob") else 1.0, noise_db_range=args.noise_db_range if hasattr(args, "noise_db_range") else "13_15", speech_volume_normalize=args.speech_volume_normalize if hasattr(args, "rir_scp") else None, ) else: retval = None assert check_return_type(retval) return retval @classmethod def required_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: if not inference: retval = ("speech", "text") else: # Recognition mode retval = ("speech",) return retval @classmethod def optional_data_names( cls, train: bool = True, inference: bool = False ) -> Tuple[str, ...]: retval = () assert check_return_type(retval) return retval @classmethod def build_model(cls, args: argparse.Namespace) -> ESPnetASRModel: assert check_argument_types() if isinstance(args.token_list, str): with open(args.token_list, encoding="utf-8") as f: token_list = [line.rstrip() for line in f] # Overwriting token_list to keep it as "portable". args.token_list = list(token_list) elif isinstance(args.token_list, (tuple, list)): token_list = list(args.token_list) else: raise RuntimeError("token_list must be str or list") vocab_size = len(token_list) logging.info(f"Vocabulary size: {vocab_size }") # 1. frontend if args.input_size is None: # Extract features in the model frontend_class = frontend_choices.get_class(args.frontend) frontend = frontend_class(**args.frontend_conf) input_size = frontend.output_size() else: # Give features from data-loader args.frontend = None args.frontend_conf = {} frontend = None input_size = args.input_size # 2. Data augmentation for spectrogram if args.specaug is not None: specaug_class = specaug_choices.get_class(args.specaug) specaug = specaug_class(**args.specaug_conf) else: specaug = None # 3. Normalization layer if args.normalize is not None: normalize_class = normalize_choices.get_class(args.normalize) normalize = normalize_class(**args.normalize_conf) else: normalize = None # 4. Pre-encoder input block # NOTE(kan-bayashi): Use getattr to keep the compatibility if getattr(args, "preencoder", None) is not None: preencoder_class = preencoder_choices.get_class(args.preencoder) preencoder = preencoder_class(**args.preencoder_conf) input_size = preencoder.output_size() else: preencoder = None # 4. Encoder encoder_class = encoder_choices.get_class(args.encoder) encoder = encoder_class(input_size=input_size, **args.encoder_conf) # 5. Decoder decoder_class = decoder_choices.get_class(args.decoder) decoder = decoder_class( vocab_size=vocab_size, encoder_output_size=encoder.output_size(), **args.decoder_conf, ) # 6. CTC ctc = CTC( odim=vocab_size, encoder_output_sizse=encoder.output_size(), **args.ctc_conf ) # 7. RNN-T Decoder (Not implemented) rnnt_decoder = None # 8. Build model model = ESPnetASRModel( vocab_size=vocab_size, frontend=frontend, specaug=specaug, normalize=normalize, preencoder=preencoder, encoder=encoder, decoder=decoder, ctc=ctc, rnnt_decoder=rnnt_decoder, token_list=token_list, **args.model_conf, ) # FIXME(kamo): Should be done in model? # 9. Initialize if args.init is not None: initialize(model, args.init) assert check_return_type(model) return model