File size: 2,785 Bytes
ca1f90f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import gradio as gr
import torch
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation
from diffusers import StableDiffusionInpaintPipeline
from PIL import Image, ImageOps
import PIL

# cuda cpu
device_name = 'cpu'
device = torch.device(device_name)

processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined").to(device)
inpainting_pipeline = StableDiffusionInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-2-inpainting").to(device)


def numpy_to_pil(images):
    if images.ndim == 3:
        images = images[None, ...]
    images = (images * 255).round().astype("uint8")

    if images.shape[-1] == 1:
        # special case for grayscale (single channel) images
        pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
    else:
        pil_images = [Image.fromarray(image) for image in images]

    return pil_images


def get_mask(text, image):
    inputs = processor(
        text=[text], images=[image], padding="max_length", return_tensors="pt"
    ).to(device)

    outputs = model(**inputs)
    mask = torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy()

    mask_pil = numpy_to_pil(mask)[0].resize(image.size)
    #mask_pil.show()
    return mask_pil


def predict(prompt, negative_prompt, image, obj2mask):
    mask = get_mask(obj2mask, image)
    image = image.convert("RGB").resize((512, 512))
    mask_image = mask.convert("RGB").resize((512, 512))
    mask_image = ImageOps.invert(mask_image)
    images = inpainting_pipeline(prompt=prompt, negative_prompt=negative_prompt, image=image,
                                 mask_image=mask_image).images
    mask = mask_image.convert('L')

    PIL.Image.composite(images[0], image, mask)
    return (images[0])


def inference(prompt, negative_prompt, obj2mask, image_numpy):
    generator = torch.Generator()
    generator.manual_seed(int(52362))

    image = numpy_to_pil(image_numpy)[0].convert("RGB").resize((512, 512))
    img = predict(prompt, negative_prompt, image, obj2mask)
    return img


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column():
            prompt = gr.Textbox(label="Prompt", value="cinematic, landscape, sharpe focus")
            negative_prompt = gr.Textbox(label="Negative Prompt", value="illustration, 3d render")
            mask = gr.Textbox(label="Mask", value="shoe")
            intput_img = gr.Image()
            run = gr.Button(value="Generate")
        with gr.Column(): 
            output_img = gr.Image()

    run.click(
        inference,
        inputs=[prompt, negative_prompt, mask, intput_img
        ],
        outputs=output_img,
    )

demo.queue(concurrency_count=1)
demo.launch()