File size: 1,170 Bytes
2ec2ebd
 
 
fe9c201
 
 
 
 
12ff912
c3eb335
dbf6fc9
ba74c9e
ad4c6dc
dbf6fc9
 
 
 
2ec2ebd
e18f8f6
5da5f21
ba74c9e
d721051
dbf6fc9
 
c3eb335
fe9c201
c3eb335
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import gradio as gr
from diffusion_lens import get_images





def generate_images(prompt):
    print('calling diffusion lens')
    all_images = []  # Initialize a list to store all images
    message = 'Generating images from intermediate layers..)'  # Message for the user
    for skip_layers in range(11, -1, -1):
        images = get_images(prompt, skip_layers=skip_layers)
        all_images.append((images[0], f'layer_{12 - skip_layers}'))  
        # all_images.append(images[0]) # (images[0], f'layer_{12 - skip_layers}'))  # Add the new image to the list
        # yield all_images  # Yield the list of all images
        yield all_images, message  # Yield the list of all images with labels and the message

with gr.Blocks() as demo:
    text_input = gr.Textbox(label="Enter prompt")
    gallery = gr.Gallery(label="Generated Images", columns=6, rows=2, object_fit="contain", height="auto")
    message_display = gr.Text(value='')  # Component to display the message
    # text_input.submit(fn=generate_images, inputs=text_input, outputs=gallery)
    text_input.submit(fn=generate_images, inputs=text_input, outputs=[gallery, message_display])

demo.launch()