import gradio as gr from diffusion_lens import get_images import numpy as np MAX_SEED = np.iinfo(np.int32).max # Description title = r"""

Diffusion Lens: Interpreting Text Encoders in Text-to-Image Pipelines

""" description = r""" A demo for the paper Diffusion Lens: Interpreting Text Encoders in Text-to-Image Pipelines.
""" article = r""" --- 📝 **Citation**
If our work is helpful for your research or applications, please cite us via: ``` bibtex @article{toker2024diffusion, title={Diffusion Lens: Interpreting Text Encoders in Text-to-Image Pipelines}, author={Toker, Michael and Orgad, Hadas and Ventura, Mor and Arad, Dana and Belinkov, Yonatan}, journal={arXiv preprint arXiv:2403.05846}, year={2024} } ``` 📧 **Abstact**
``` Text-to-image diffusion models (T2I) use a latent representation of a text prompt to guide the image generation process. However, the process by which the encoder produces the text representation is unknown. We propose the Diffusion Lens, a method for analyzing the text encoder of T2I models by generating images from its intermediate representations. Using the Diffusion Lens, we perform an extensive analysis of two recent T2I models. Exploring compound prompts, we find that complex scenes describing multiple objects are composed progressively and more slowly compared to simple scenes; Exploring knowledge retrieval, we find that representation of uncommon concepts requires further computation compared to common concepts, and that knowledge retrieval is gradual across layers. Overall, our findings provide valuable insights into the text encoder component in T2I pipelines. ```
📧 **Contact**
``` If you have any questions, please feel free to open an issue or directly reach us out at tok@cs.technion.ac.il ``` . """ model_num_of_layers = { 'Stable Diffusion 1.4': 12, 'Stable Diffusion 2.1': 22, } def generate_images(prompt, model, seed, skip): seed = random.randint(0, MAX_SEED) if seed == -1 else seed print('calling diffusion lens with model:', model, 'and seed:', seed) gr.Info('Generating images from intermediate layers..') all_images = [] # Initialize a list to store all images max_num_of_layers = model_num_of_layers[model] for skip_layers in range(max_num_of_layers - 1, -1, -1 * skip): # Pass the model and seed to the get_images function images = get_images(prompt, skip_layers=skip_layers, model=model, seed=seed) all_images.append((images[0], f'layer_{max_num_of_layers - skip_layers}')) yield all_images with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) # text_input = gr.Textbox(label="Enter prompt") # model_select = gr.Dropdown(label="Select Model", choices=['sd1', 'sd2']) # seed_input = gr.Number(label="Enter Seed", value=0) # Default seed set to 0 # Update the submit function to include the new inputs # text_input.submit(fn=generate_images, inputs=[text_input, model_select, seed_input], outputs=gallery) with gr.Column(): prompt = gr.Textbox( label="Prompt", value="A photo of Steve Jobs", ) model = gr.Radio( [ "Stable Diffusion 1.4", "Stable Diffusion 2.1", ], value="Stable Diffusion 1.4", label="Model", ) seed = gr.Slider( minimum=0, maximum=MAX_SEED, value=42, step=1, label="Seed Value", ) skip = gr.Slider( minimum=0, maximum=6, value=4, step=1, label="Number of layers to skip between each generaion", ) inputs = [ prompt, model, seed, skip, ] generate_button = gr.Button("Generate Image") with gr.Column(): gallery = gr.Gallery(label="Generated Images", columns=6, rows=1, object_fit="contain", height="auto") outputs = [gallery] gr.on( triggers=[ # prompt.submit, generate_button.click, # seed.input, # model.input ], fn=generate_images, inputs=inputs, outputs=outputs, show_progress="full", show_api=False, trigger_mode="always_last", ) gr.Markdown(article) demo.queue(api_open=False) demo.launch(show_api=False)