from diffusers import StableDiffusionPipeline, EulerDiscreteScheduler import torch pipeline = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4") pipeline.scheduler = EulerDiscreteScheduler.from_config(pipeline.scheduler.config) # Check if CUDA is available and set the device accordingly device = "cuda" if torch.cuda.is_available() else "cpu" # Move the pipeline to the device pipeline.to(device) def get_images(prompt, skip_layers): print('inside get images') print(f'skipping {skip_layers}') pipeline_output = pipeline(prompt, clip_skip=skip_layers, num_images_per_prompt=1, return_tensors=False) print('after pipeline') images = pipeline_output.images print('got images') return images