File size: 2,296 Bytes
b532d19
 
 
 
 
 
 
9d0448b
9e96074
b532d19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f06e67
 
8af5ec0
b532d19
 
 
 
 
 
 
8af5ec0
b532d19
8af5ec0
b532d19
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gradio as gr
import os
from pathlib import Path
import argparse
from huggingface_hub import snapshot_download
from llama_cpp import Llama

repo_name = 'tolgadev/llama-2-7b-ruyallm-GGUF'
model_file = "llama-2-7b-tk-mini.Q4_K_M.gguf"

snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_file)

DEFAULT_MODEL_PATH = model_file
llm = Llama(model_path=model_file, model_type="llama")

def predict(input, chatbot, max_length, top_p, temperature, history):
    chatbot.append((input, ""))
    response = ""
    history.append(input)

    for output in llm(input, stream=True, temperature=temperature, top_p=top_p, max_tokens=max_length, ):
        piece = output['choices'][0]['text']
        response += piece
        chatbot[-1] = (chatbot[-1][0], response)

        yield chatbot, history

    history.append(response)
    yield chatbot, history


def reset_user_input():
    return gr.update(value="")

def reset_state():
    return [], []

with gr.Blocks() as demo:
    gr.HTML("""<h1 align="center">RuyaTabirleriLLM Chatbot Demo</h1>
            <h3 align="center">This is unofficial demo of `tolgadev/llama-2-7b-tk-mini-GGUF` model based on LLama2 architecture.</h3>
            <h4 align="center">Hit the like button if you liked! 🤗</h4>""")

    chatbot = gr.Chatbot()
    with gr.Row():
        with gr.Column(scale=4):
            user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=8, elem_id="user_input")
            submitBtn = gr.Button("Submit", variant="primary", elem_id="submit_btn")
        with gr.Column(scale=1):
            max_length = gr.Slider(0, 2048, value=1024, step=2.0, label="Maximum Length", interactive=True)
            top_p = gr.Slider(0, 1, value=0.7, step=0.01, label="Top P", interactive=True)
            temperature = gr.Slider(0, 1.0, value=0.7, step=0.1, label="Temperature", interactive=True)
            emptyBtn = gr.Button("Clear History")

    history = gr.State([])

    submitBtn.click(
        predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], show_progress=True
    )
    submitBtn.click(reset_user_input, [], [user_input])

    emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)

demo.queue().launch(share=False, inbrowser=True)