Tolga commited on
Commit
51ad49f
·
1 Parent(s): 8695dc5

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +51 -0
  2. requirements.txt +3 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #### Import Dependencies ####
2
+ import gradio as gr
3
+ import transformers
4
+ from transformers import pipeline
5
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
6
+ import torch
7
+
8
+ #### Model 1 ####
9
+ model_name = "snrspeaks/t5-one-line-summary"
10
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
11
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
12
+
13
+ #### Model 2 ####
14
+ summarizer = pipeline(
15
+ "summarization",
16
+ "pszemraj/long-t5-tglobal-base-16384-book-summary",
17
+ device=0 if torch.cuda.is_available() else -1,
18
+ )
19
+
20
+ params = {
21
+ "max_length": 256,
22
+ "min_length": 8,
23
+ "no_repeat_ngram_size": 3,
24
+ "early_stopping": True,
25
+ "repetition_penalty": 3.5,
26
+ "length_penalty": 0.3,
27
+ "encoder_no_repeat_ngram_size": 3,
28
+ "num_beams": 4,
29
+ } # parameters for text generation out of model
30
+
31
+
32
+ #### Run the model 1####
33
+ def summarize(text):
34
+ input_ids = tokenizer.encode("summarize: " + text, return_tensors="pt", add_special_tokens=True)
35
+ generated_id = model.generate(input_ids=input_ids,num_beams=5,max_length=50,repetition_penalty=2.5,length_penalty=1,early_stopping=True,num_return_sequences=1)
36
+ pred = tokenizer.decode(generated_id[0], skip_special_tokens=True, clean_up_tokenization_spaces=True)
37
+
38
+ result = summarizer(text, **params)
39
+ pred2 = result[0]['summary_text']
40
+
41
+ return pred, pred2
42
+
43
+ #### Display summarized text ####
44
+ with gr.Blocks() as demo:
45
+ text = gr.Textbox(label="Text", lines=10, placeholder="Enter text here")
46
+ t1 = gr.Textbox(label="Output")
47
+ t2 = gr.Textbox(label="Output2")
48
+ btn = gr.Button("Summarise")
49
+ btn.click(fn=summarize, inputs=text, outputs=[t1,t2])
50
+
51
+ demo.launch()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ transformers
2
+ torch
3
+ tensorflow