Spaces:
Running
Running
tomas-gajarsky
commited on
Commit
·
65a4898
1
Parent(s):
636e0ba
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,6 @@ import json
|
|
3 |
import argparse
|
4 |
import operator
|
5 |
import gradio as gr
|
6 |
-
import torch
|
7 |
import torchvision
|
8 |
from typing import Tuple, Dict
|
9 |
from facetorch import FaceAnalyzer
|
@@ -25,26 +24,6 @@ cfg = OmegaConf.load(args.path_conf)
|
|
25 |
analyzer = FaceAnalyzer(cfg.analyzer)
|
26 |
|
27 |
|
28 |
-
def tensor_to_list(tensor: torch.Tensor) -> list:
|
29 |
-
return tensor.tolist()
|
30 |
-
|
31 |
-
def dataclass_to_dict(obj):
|
32 |
-
if hasattr(obj, "__dataclass_fields__"):
|
33 |
-
return asdict(obj)
|
34 |
-
return obj
|
35 |
-
|
36 |
-
def image_data_to_json(image_data: ImageData) -> str:
|
37 |
-
# Convert tensors to lists
|
38 |
-
image_data.img = tensor_to_list(image_data.img)
|
39 |
-
image_data.tensor = tensor_to_list(image_data.tensor)
|
40 |
-
|
41 |
-
# Convert dataclass to dictionary
|
42 |
-
data_dict = dataclass_to_dict(image_data)
|
43 |
-
|
44 |
-
# Convert dictionary to JSON string
|
45 |
-
json_str = json.dumps(data_dict, indent=4, default=dataclass_to_dict)
|
46 |
-
return json_str
|
47 |
-
|
48 |
def gen_sim_dict_str(response: ImageData, pred_name: str = "verify", index: int = 0)-> str:
|
49 |
if len(response.faces) > 0:
|
50 |
base_emb = response.faces[index].preds[pred_name].logits
|
@@ -71,7 +50,7 @@ def inference(path_image: str) -> Tuple:
|
|
71 |
fer_dict_str = str({face.indx: face.preds["fer"].label for face in response.faces})
|
72 |
au_dict_str = str({face.indx: face.preds["au"].other["multi"] for face in response.faces})
|
73 |
deepfake_dict_str = str({face.indx: face.preds["deepfake"].label for face in response.faces})
|
74 |
-
response_str =
|
75 |
|
76 |
sim_dict_str_embed = gen_sim_dict_str(response, pred_name="embed", index=0)
|
77 |
sim_dict_str_verify = gen_sim_dict_str(response, pred_name="verify", index=0)
|
|
|
3 |
import argparse
|
4 |
import operator
|
5 |
import gradio as gr
|
|
|
6 |
import torchvision
|
7 |
from typing import Tuple, Dict
|
8 |
from facetorch import FaceAnalyzer
|
|
|
24 |
analyzer = FaceAnalyzer(cfg.analyzer)
|
25 |
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
def gen_sim_dict_str(response: ImageData, pred_name: str = "verify", index: int = 0)-> str:
|
28 |
if len(response.faces) > 0:
|
29 |
base_emb = response.faces[index].preds[pred_name].logits
|
|
|
50 |
fer_dict_str = str({face.indx: face.preds["fer"].label for face in response.faces})
|
51 |
au_dict_str = str({face.indx: face.preds["au"].other["multi"] for face in response.faces})
|
52 |
deepfake_dict_str = str({face.indx: face.preds["deepfake"].label for face in response.faces})
|
53 |
+
response_str = str(response)
|
54 |
|
55 |
sim_dict_str_embed = gen_sim_dict_str(response, pred_name="embed", index=0)
|
56 |
sim_dict_str_verify = gen_sim_dict_str(response, pred_name="verify", index=0)
|