import os import json import argparse import operator import gradio as gr import torch import torchvision from typing import Tuple, Dict from facetorch import FaceAnalyzer from facetorch.datastruct import ImageData from omegaconf import OmegaConf from torch.nn.functional import cosine_similarity parser = argparse.ArgumentParser(description="App") parser.add_argument( "--path-conf", type=str, default="config.merged.yml", help="Path to the config file", ) args = parser.parse_args() cfg = OmegaConf.load(args.path_conf) analyzer = FaceAnalyzer(cfg.analyzer) def tensor_to_list(tensor: torch.Tensor) -> list: return tensor.tolist() def dataclass_to_dict(obj): if hasattr(obj, "__dataclass_fields__"): return asdict(obj) return obj def image_data_to_json(image_data: ImageData) -> str: # Convert tensors to lists image_data.img = tensor_to_list(image_data.img) image_data.tensor = tensor_to_list(image_data.tensor) # Convert dataclass to dictionary data_dict = dataclass_to_dict(image_data) # Convert dictionary to JSON string json_str = json.dumps(data_dict, indent=4, default=dataclass_to_dict) return json_str def gen_sim_dict_str(response: ImageData, pred_name: str = "verify", index: int = 0)-> str: if len(response.faces) > 0: base_emb = response.faces[index].preds[pred_name].logits sim_dict = {face.indx: cosine_similarity(base_emb, face.preds[pred_name].logits, dim=0).item() for face in response.faces} sim_dict_sort = dict(sorted(sim_dict.items(), key=operator.itemgetter(1),reverse=True)) sim_dict_sort_str = str(sim_dict_sort) else: sim_dict_sort_str = "" return sim_dict_sort_str def inference(path_image: str) -> Tuple: response = analyzer.run( path_image=path_image, batch_size=cfg.batch_size, fix_img_size=cfg.fix_img_size, return_img_data=cfg.return_img_data, include_tensors=cfg.include_tensors, path_output=None, ) pil_image = torchvision.transforms.functional.to_pil_image(response.img) fer_dict_str = str({face.indx: face.preds["fer"].label for face in response.faces}) au_dict_str = str({face.indx: face.preds["au"].other["multi"] for face in response.faces}) deepfake_dict_str = str({face.indx: face.preds["deepfake"].label for face in response.faces}) response_str = image_data_to_json(response) sim_dict_str_embed = gen_sim_dict_str(response, pred_name="embed", index=0) sim_dict_str_verify = gen_sim_dict_str(response, pred_name="verify", index=0) os.remove(path_image) out_tuple = (pil_image, fer_dict_str, au_dict_str, deepfake_dict_str, sim_dict_str_embed, sim_dict_str_verify, response_str) return out_tuple title = "Face Analysis" description = "Demo of facetorch, a face analysis Python library that implements open-source pre-trained neural networks for face detection, representation learning, verification, expression recognition, action unit detection, deepfake detection, and 3D alignment. Try selecting one of the example images or upload your own. Feel free to duplicate this space and run it faster on a GPU instance. This work would not be possible without the researchers and engineers who trained the models (sources and credits can be found in the facetorch repository)." article = "
" demo=gr.Interface( inference, [gr.Image(label="Input", type="filepath")], [gr.Image(type="pil", label="Face Detection and 3D Landmarks"), gr.Textbox(label="Facial Expression Recognition"), gr.Textbox(label="Facial Action Unit Detection"), gr.Textbox(label="DeepFake Detection"), gr.Textbox(label="Cosine similarity of Face Representation Embeddings"), gr.Textbox(label="Cosine similarity of Face Verification Embeddings"), gr.Textbox(label="Response")], title=title, description=description, article=article, examples=[["./test5.jpg"], ["./test.jpg"], ["./test4.jpg"], ["./test8.jpg"], ["./test6.jpg"], ["./test3.jpg"], ["./test10.jpg"]], ) demo.queue(concurrency_count=1, api_open=False) demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)