import json import gradio as gr import torchvision from facetorch import FaceAnalyzer from omegaconf import OmegaConf cfg = OmegaConf.load("config.merged.yml") analyzer = FaceAnalyzer(cfg.analyzer) def inference(path_image): response = analyzer.run( path_image=path_image, batch_size=cfg.batch_size, fix_img_size=cfg.fix_img_size, return_img_data=cfg.return_img_data, include_tensors=cfg.include_tensors, path_output=None, ) pil_image = torchvision.transforms.functional.to_pil_image(response.img) fer_dict_str = str({face.indx: face.preds["fer"].label for face in response.faces}) deepfake_dict_str = str({face.indx: face.preds["deepfake"].label for face in response.faces}) response_str = str(response) base_emb = response.faces[0].preds["verify"].logits sim_dict = {face.indx: cosine_similarity(base_emb, face.preds["verify"].logits, dim=0).item() for face in response.faces} sim_dict_sort = dict(sorted(sim_dict.items(), key=operator.itemgetter(1),reverse=True)) sim_dict_sort_str = str(sim_dict_sort) out_tuple = (pil_image, fer_dict_str, deepfake_dict_str, sim_dict_sort_str, response_str) return out_tuple title = "facetorch" description = "Demo of facetorch, a Python library that can detect faces and analyze facial features using deep neural networks. The goal is to gather open-sourced face analysis models from the community and optimize them for performance using TorchScrip. Try selecting one of the example images or upload your own." article = "
" demo=gr.Interface( inference, [gr.inputs.Image(label="Input", type="filepath")], [gr.outputs.Image(type="pil", label="Output"), gr.outputs.Textbox(label="Facial Expression Recognition"), gr.outputs.Textbox(label="DeepFake Detection"), gr.outputs.Textbox(label="Cosine similarity on Face Verification Embeddings"), gr.outputs.Textbox(label="Response")], title=title, description=description, article=article, examples=[["./test.jpg"], ["./test2.jpg"], ["./test3.jpg"], ["./test4.jpg"]], ) demo.launch(server_name="0.0.0.0", server_port=7860, debug=True)