File size: 12,504 Bytes
e553611 74fd100 e553611 74fd100 e553611 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from pyChatGPT import ChatGPT
import gradio as gr
import os, sys, json
from loguru import logger
import paddlehub as hub
import random
language_translation_model = hub.Module(directory=f'./baidu_translate')
def getTextTrans(text, source='zh', target='en'):
try:
text_translation = language_translation_model.translate(text, source, target)
return text_translation
except Exception as e:
return text
session_token = os.environ.get('SessionToken')
# logger.info(f"session_token_: {session_token}")
def get_response_from_chatbot(text):
try:
api = ChatGPT(session_token)
resp = api.send_message(text)
api.refresh_auth()
api.reset_conversation()
response = resp['message']
# logger.info(f"response_: {response}")
except:
response = "Sorry, I'm busy. Try again later."
return response
model_ids = {
# "models/stabilityai/stable-diffusion-2-1":"sd-v2-1",
# "models/stabilityai/stable-diffusion-2":"sd-v2-0",
# "models/runwayml/stable-diffusion-v1-5":"sd-v1-5",
# "models/CompVis/stable-diffusion-v1-4":"sd-v1-4",
"models/prompthero/openjourney":"openjourney",
# "models/ShadoWxShinigamI/Midjourney-Rangoli":"midjourney",
# "models/hakurei/waifu-diffusion":"waifu-diffusion",
# "models/Linaqruf/anything-v3.0":"anything-v3.0",
}
tab_actions = []
tab_titles = []
for model_id in model_ids.keys():
print(model_id, model_ids[model_id])
try:
tab = gr.Interface.load(model_id)
tab_actions.append(tab)
tab_titles.append(model_ids[model_id])
except:
logger.info(f"load_fail__{model_id}_")
def chat(input0, input1, chat_radio, chat_history):
out_chat = []
if chat_history != '':
out_chat = json.loads(chat_history)
logger.info(f"out_chat_: {len(out_chat)} / {chat_radio}")
if chat_radio == "Talk to chatGPT":
response = get_response_from_chatbot(input0)
out_chat.append((input0, response))
chat_history = json.dumps(out_chat)
return out_chat, input1, chat_history
else:
prompt_en = getTextTrans(input0, source='zh', target='en') + f',{random.randint(0,sys.maxsize)}'
return out_chat, prompt_en, chat_history
start_work = """async() => {
function isMobile() {
try {
document.createEvent("TouchEvent"); return true;
} catch(e) {
return false;
}
}
function getClientHeight()
{
var clientHeight=0;
if(document.body.clientHeight&&document.documentElement.clientHeight) {
var clientHeight = (document.body.clientHeight<document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
} else {
var clientHeight = (document.body.clientHeight>document.documentElement.clientHeight)?document.body.clientHeight:document.documentElement.clientHeight;
}
return clientHeight;
}
function setNativeValue(element, value) {
const valueSetter = Object.getOwnPropertyDescriptor(element.__proto__, 'value').set;
const prototype = Object.getPrototypeOf(element);
const prototypeValueSetter = Object.getOwnPropertyDescriptor(prototype, 'value').set;
if (valueSetter && valueSetter !== prototypeValueSetter) {
prototypeValueSetter.call(element, value);
} else {
valueSetter.call(element, value);
}
}
var gradioEl = document.querySelector('body > gradio-app').shadowRoot;
if (!gradioEl) {
gradioEl = document.querySelector('body > gradio-app');
}
if (typeof window['gradioEl'] === 'undefined') {
window['gradioEl'] = gradioEl;
const page1 = window['gradioEl'].querySelectorAll('#page_1')[0];
const page2 = window['gradioEl'].querySelectorAll('#page_2')[0];
page1.style.display = "none";
page2.style.display = "block";
window['div_count'] = 0;
window['chat_bot'] = window['gradioEl'].querySelectorAll('#chat_bot')[0];
window['chat_bot1'] = window['gradioEl'].querySelectorAll('#chat_bot1')[0];
chat_row = window['gradioEl'].querySelectorAll('#chat_row')[0];
prompt_row = window['gradioEl'].querySelectorAll('#prompt_row')[0];
window['chat_bot1'].children[1].textContent = '';
clientHeight = getClientHeight();
if (isMobile()) {
output_htmls = window['gradioEl'].querySelectorAll('.output-html');
for (var i = 0; i < output_htmls.length; i++) {
output_htmls[i].style.display = "none";
}
new_height = (clientHeight - 250) + 'px';
} else {
new_height = (clientHeight - 350) + 'px';
}
chat_row.style.height = new_height;
window['chat_bot'].style.height = new_height;
window['chat_bot'].children[2].style.height = new_height;
window['chat_bot1'].style.height = new_height;
window['chat_bot1'].children[2].style.height = new_height;
prompt_row.children[0].style.flex = 'auto';
prompt_row.children[0].style.width = '100%';
window['gradioEl'].querySelectorAll('#chat_radio')[0].style.flex = 'auto';
window['gradioEl'].querySelectorAll('#chat_radio')[0].style.width = '100%';
prompt_row.children[0].setAttribute('style','flex-direction: inherit; flex: 1 1 auto; width: 100%;border-color: green;border-width: 1px !important;')
window['chat_bot1'].children[1].setAttribute('style', 'border-bottom-right-radius:0;top:unset;bottom:0;padding-left:0.1rem;');
window['prevPrompt'] = '';
window['doCheckPrompt'] = 0;
window['prevImgSrc'] = '';
window['checkChange'] = function checkChange() {
try {
if (window['gradioEl'].querySelectorAll('.gr-radio')[0].checked) {
if (window['chat_bot'].children[2].children[0].children.length > window['div_count']) {
new_len = window['chat_bot'].children[2].children[0].children.length - window['div_count'];
for (var i = 0; i < new_len; i++) {
new_div = window['chat_bot'].children[2].children[0].children[window['div_count'] + i].cloneNode(true);
window['chat_bot1'].children[2].children[0].appendChild(new_div);
}
window['div_count'] = chat_bot.children[2].children[0].children.length;
window['chat_bot1'].children[2].scrollTop = window['chat_bot1'].children[2].scrollHeight;
}
if (window['chat_bot'].children[0].children.length > 1) {
window['chat_bot1'].children[1].textContent = window['chat_bot'].children[0].children[1].textContent;
} else {
window['chat_bot1'].children[1].textContent = '';
}
} else {
texts = window['gradioEl'].querySelectorAll('textarea');
text0 = texts[0];
text1 = texts[1];
img_index = 0;
if (window['doCheckPrompt'] === 0 && window['prevPrompt'] !== text1.value) {
console.log('_____new prompt___[' + text1.value + ']_');
window['doCheckPrompt'] = 1;
window['prevPrompt'] = text1.value;
for (var i = 3; i < texts.length; i++) {
setNativeValue(texts[i], text1.value);
texts[i].dispatchEvent(new Event('input', { bubbles: true }));
}
setTimeout(function() {
img_submit_btns = window['gradioEl'].querySelectorAll('#tab_img')[0].querySelectorAll("button");
for (var i = 0; i < img_submit_btns.length; i++) {
if (img_submit_btns[i].innerText == 'Submit') {
img_submit_btns[i].click();
}
}
window['doCheckPrompt'] = 0;
}, 10);
}
tabitems = window['gradioEl'].querySelectorAll('.tabitem');
imgs = tabitems[img_index].children[0].children[1].children[1].children[0].querySelectorAll("img");
if (imgs.length > 0) {
if (window['prevImgSrc'] !== imgs[0].src) {
var user_div = document.createElement("div");
user_div.className = "px-3 py-2 rounded-[22px] rounded-br-none text-white text-sm chat-message svelte-rct66g";
user_div.style.backgroundColor = "#16a34a";
user_div.innerHTML = "<p>" + text0.value + "</p>";
window['chat_bot1'].children[2].children[0].appendChild(user_div);
var bot_div = document.createElement("div");
bot_div.className = "px-3 py-2 rounded-[22px] rounded-bl-none place-self-start text-white text-sm chat-message svelte-rct66g";
bot_div.style.backgroundColor = "#2563eb";
bot_div.style.width = "80%";
bot_div.style.padding = "0.2rem";
bot_div.appendChild(imgs[0].cloneNode(true));
window['chat_bot1'].children[2].children[0].appendChild(bot_div);
window['chat_bot1'].children[2].scrollTop = window['chat_bot1'].children[2].scrollHeight;
window['prevImgSrc'] = imgs[0].src;
}
}
if (tabitems[img_index].children[0].children[1].children[1].children[0].children[0].children.length > 1) {
window['chat_bot1'].children[1].textContent = tabitems[img_index].children[0].children[1].children[1].children[0].children[0].children[1].textContent;
} else {
window['chat_bot1'].children[1].textContent = '';
}
}
} catch(e) {
}
}
window['checkChange_interval'] = window.setInterval("window.checkChange()", 500);
}
return false;
}"""
with gr.Blocks(title='Talk to chatGPT') as demo:
with gr.Group(elem_id="page_1", visible=True) as page_1:
with gr.Box():
with gr.Row():
start_button = gr.Button("", elem_id="start-btn", visible=True)
start_button.click(fn=None, inputs=[], outputs=[], _js=start_work)
with gr.Group(elem_id="page_2", visible=False) as page_2:
with gr.Row(elem_id="chat_row"):
chatbot = gr.Chatbot(elem_id="chat_bot", visible=False).style(color_map=("green", "blue"))
chatbot1 = gr.Chatbot(elem_id="chat_bot1").style(color_map=("green", "blue"))
with gr.Row(elem_id="prompt_row"):
prompt_input0 = gr.Textbox(lines=2, label="prompt",show_label=False)
prompt_input1 = gr.Textbox(lines=4, label="prompt", visible=False)
chat_history = gr.Textbox(lines=4, label="prompt", visible=False)
chat_radio = gr.Radio(["1", "2"], elem_id="chat_radio",value="Talk to chatGPT", show_label=False)
submit_btn = gr.Button(value = "submit",elem_id="submit-btn").style(
margin=True,
rounded=(True, True, True, True),
width=100
)
submit_btn.click(fn=chat,
inputs=[prompt_input0, prompt_input1, chat_radio, chat_history],
outputs=[chatbot, prompt_input1, chat_history],
)
with gr.Row(elem_id='tab_img', visible=False).style(height=5):
tab_img = gr.TabbedInterface(tab_actions, tab_titles)
demo.launch(debug = True) |