Spaces:
Runtime error
Runtime error
File size: 6,086 Bytes
7816ae1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
from __future__ import annotations
import argparse
import os
import pathlib
import subprocess
import sys
from typing import Callable
import dlib
import huggingface_hub
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
import torchvision.transforms as T
if os.getenv('SYSTEM') == 'spaces':
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/fused_act.py")
os.system("sed -i '10,17d' DualStyleGAN/model/stylegan/op/upfirdn2d.py")
app_dir = pathlib.Path(__file__).parent
submodule_dir = app_dir / 'DualStyleGAN'
sys.path.insert(0, submodule_dir.as_posix())
from model.dualstylegan import DualStyleGAN
from model.encoder.align_all_parallel import align_face
from model.encoder.psp import pSp
MODEL_REPO = 'CVPR/DualStyleGAN'
class Model:
def __init__(self, device: torch.device | str):
self.device = torch.device(device)
self.landmark_model = self._create_dlib_landmark_model()
self.encoder = self._load_encoder()
self.transform = self._create_transform()
self.style_types = [
'cartoon',
'caricature',
'anime',
'arcane',
'comic',
'pixar',
'slamdunk',
]
self.generator_dict = {
style_type: self._load_generator(style_type)
for style_type in self.style_types
}
self.exstyle_dict = {
style_type: self._load_exstylecode(style_type)
for style_type in self.style_types
}
@staticmethod
def _create_dlib_landmark_model():
url = 'http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2'
path = pathlib.Path('shape_predictor_68_face_landmarks.dat')
if not path.exists():
bz2_path = 'shape_predictor_68_face_landmarks.dat.bz2'
torch.hub.download_url_to_file(url, bz2_path)
subprocess.run(f'bunzip2 -d {bz2_path}'.split())
return dlib.shape_predictor(path.as_posix())
def _load_encoder(self) -> nn.Module:
ckpt_path = huggingface_hub.hf_hub_download(MODEL_REPO,
'models/encoder.pt')
ckpt = torch.load(ckpt_path, map_location='cpu')
opts = ckpt['opts']
opts['device'] = self.device.type
opts['checkpoint_path'] = ckpt_path
opts = argparse.Namespace(**opts)
model = pSp(opts)
model.to(self.device)
model.eval()
return model
@staticmethod
def _create_transform() -> Callable:
transform = T.Compose([
T.Resize(256),
T.CenterCrop(256),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
])
return transform
def _load_generator(self, style_type: str) -> nn.Module:
model = DualStyleGAN(1024, 512, 8, 2, res_index=6)
ckpt_path = huggingface_hub.hf_hub_download(
MODEL_REPO, f'models/{style_type}/generator.pt')
ckpt = torch.load(ckpt_path, map_location='cpu')
model.load_state_dict(ckpt['g_ema'])
model.to(self.device)
model.eval()
return model
@staticmethod
def _load_exstylecode(style_type: str) -> dict[str, np.ndarray]:
if style_type in ['cartoon', 'caricature', 'anime']:
filename = 'refined_exstyle_code.npy'
else:
filename = 'exstyle_code.npy'
path = huggingface_hub.hf_hub_download(
MODEL_REPO, f'models/{style_type}/{filename}')
exstyles = np.load(path, allow_pickle=True).item()
return exstyles
def detect_and_align_face(self, image) -> np.ndarray:
image = align_face(filepath=image.name, predictor=self.landmark_model)
return image
@staticmethod
def denormalize(tensor: torch.Tensor) -> torch.Tensor:
return torch.clamp((tensor + 1) / 2 * 255, 0, 255).to(torch.uint8)
def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
tensor = self.denormalize(tensor)
return tensor.cpu().numpy().transpose(1, 2, 0)
@torch.inference_mode()
def reconstruct_face(self,
image: np.ndarray) -> tuple[np.ndarray, torch.Tensor]:
image = PIL.Image.fromarray(image)
input_data = self.transform(image).unsqueeze(0).to(self.device)
img_rec, instyle = self.encoder(input_data,
randomize_noise=False,
return_latents=True,
z_plus_latent=True,
return_z_plus_latent=True,
resize=False)
img_rec = torch.clamp(img_rec.detach(), -1, 1)
img_rec = self.postprocess(img_rec[0])
return img_rec, instyle
@torch.inference_mode()
def generate(self, style_type: str, style_id: int, structure_weight: float,
color_weight: float, structure_only: bool,
instyle: torch.Tensor) -> np.ndarray:
generator = self.generator_dict[style_type]
exstyles = self.exstyle_dict[style_type]
style_id = int(style_id)
stylename = list(exstyles.keys())[style_id]
latent = torch.tensor(exstyles[stylename]).to(self.device)
if structure_only:
latent[0, 7:18] = instyle[0, 7:18]
exstyle = generator.generator.style(
latent.reshape(latent.shape[0] * latent.shape[1],
latent.shape[2])).reshape(latent.shape)
img_gen, _ = generator([instyle],
exstyle,
z_plus_latent=True,
truncation=0.7,
truncation_latent=0,
use_res=True,
interp_weights=[structure_weight] * 7 +
[color_weight] * 11)
img_gen = torch.clamp(img_gen.detach(), -1, 1)
img_gen = self.postprocess(img_gen[0])
return img_gen
|