File size: 10,380 Bytes
29f689c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
import torch
import torch.nn as nn
import torch.nn.functional as F


class ConvBNAct(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 groups=1,
                 use_act=True):
        super().__init__()
        self.use_act = use_act
        self.conv = nn.Conv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding=(kernel_size - 1) // 2,
            groups=groups,
            bias=False,
        )
        self.bn = nn.BatchNorm2d(out_channels)
        if self.use_act:
            self.act = nn.ReLU()

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.use_act:
            x = self.act(x)
        return x


class ESEModule(nn.Module):

    def __init__(self, channels):
        super().__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv2d(
            in_channels=channels,
            out_channels=channels,
            kernel_size=1,
            stride=1,
            padding=0,
        )
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        identity = x
        x = self.avg_pool(x)
        x = self.conv(x)
        x = self.sigmoid(x)
        return x * identity


class HG_Block(nn.Module):

    def __init__(
        self,
        in_channels,
        mid_channels,
        out_channels,
        layer_num,
        identity=False,
    ):
        super().__init__()
        self.identity = identity

        self.layers = nn.ModuleList()
        self.layers.append(
            ConvBNAct(
                in_channels=in_channels,
                out_channels=mid_channels,
                kernel_size=3,
                stride=1,
            ))
        for _ in range(layer_num - 1):
            self.layers.append(
                ConvBNAct(
                    in_channels=mid_channels,
                    out_channels=mid_channels,
                    kernel_size=3,
                    stride=1,
                ))

        # feature aggregation
        total_channels = in_channels + layer_num * mid_channels
        self.aggregation_conv = ConvBNAct(
            in_channels=total_channels,
            out_channels=out_channels,
            kernel_size=1,
            stride=1,
        )
        self.att = ESEModule(out_channels)

    def forward(self, x):
        identity = x
        output = []
        output.append(x)
        for layer in self.layers:
            x = layer(x)
            output.append(x)
        x = torch.cat(output, dim=1)
        x = self.aggregation_conv(x)
        x = self.att(x)
        if self.identity:
            x += identity
        return x


class HG_Stage(nn.Module):

    def __init__(
        self,
        in_channels,
        mid_channels,
        out_channels,
        block_num,
        layer_num,
        downsample=True,
        stride=[2, 1],
    ):
        super().__init__()
        self.downsample = downsample
        if downsample:
            self.downsample = ConvBNAct(
                in_channels=in_channels,
                out_channels=in_channels,
                kernel_size=3,
                stride=stride,
                groups=in_channels,
                use_act=False,
            )

        blocks_list = []
        blocks_list.append(
            HG_Block(in_channels,
                     mid_channels,
                     out_channels,
                     layer_num,
                     identity=False))
        for _ in range(block_num - 1):
            blocks_list.append(
                HG_Block(out_channels,
                         mid_channels,
                         out_channels,
                         layer_num,
                         identity=True))
        self.blocks = nn.Sequential(*blocks_list)

    def forward(self, x):
        if self.downsample:
            x = self.downsample(x)
        x = self.blocks(x)
        return x


class PPHGNet(nn.Module):
    """
    PPHGNet
    Args:
        stem_channels: list. Stem channel list of PPHGNet.
        stage_config: dict. The configuration of each stage of PPHGNet. such as the number of channels, stride, etc.
        layer_num: int. Number of layers of HG_Block.
        use_last_conv: boolean. Whether to use a 1x1 convolutional layer before the classification layer.
        class_expand: int=2048. Number of channels for the last 1x1 convolutional layer.
        dropout_prob: float. Parameters of dropout, 0.0 means dropout is not used.
        class_num: int=1000. The number of classes.
    Returns:
        model: nn.Layer. Specific PPHGNet model depends on args.
    """

    def __init__(
        self,
        stem_channels,
        stage_config,
        layer_num,
        in_channels=3,
        det=False,
        out_indices=None,
    ):
        super().__init__()
        self.det = det
        self.out_indices = out_indices if out_indices is not None else [
            0, 1, 2, 3
        ]

        # stem
        stem_channels.insert(0, in_channels)
        self.stem = nn.Sequential(*[
            ConvBNAct(
                in_channels=stem_channels[i],
                out_channels=stem_channels[i + 1],
                kernel_size=3,
                stride=2 if i == 0 else 1,
            ) for i in range(len(stem_channels) - 1)
        ])

        if self.det:
            self.pool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # stages
        self.stages = nn.ModuleList()
        self.out_channels = []
        for block_id, k in enumerate(stage_config):
            (
                in_channels,
                mid_channels,
                out_channels,
                block_num,
                downsample,
                stride,
            ) = stage_config[k]
            self.stages.append(
                HG_Stage(
                    in_channels,
                    mid_channels,
                    out_channels,
                    block_num,
                    layer_num,
                    downsample,
                    stride,
                ))
            if block_id in self.out_indices:
                self.out_channels.append(out_channels)

        if not self.det:
            self.out_channels = stage_config['stage4'][2]

        self._init_weights()

    def _init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.zeros_(m.bias)

    def forward(self, x):
        x = self.stem(x)
        if self.det:
            x = self.pool(x)

        out = []
        for i, stage in enumerate(self.stages):
            x = stage(x)
            if self.det and i in self.out_indices:
                out.append(x)
        if self.det:
            return out

        if self.training:
            x = F.adaptive_avg_pool2d(x, [1, 40])
        else:
            x = F.avg_pool2d(x, [3, 2])
        return x


def PPHGNet_tiny(pretrained=False, use_ssld=False, **kwargs):
    """
    PPHGNet_tiny
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `PPHGNet_tiny` model depends on args.
    """
    stage_config = {
        # in_channels, mid_channels, out_channels, blocks, downsample
        'stage1': [96, 96, 224, 1, False, [2, 1]],
        'stage2': [224, 128, 448, 1, True, [1, 2]],
        'stage3': [448, 160, 512, 2, True, [2, 1]],
        'stage4': [512, 192, 768, 1, True, [2, 1]],
    }

    model = PPHGNet(stem_channels=[48, 48, 96],
                    stage_config=stage_config,
                    layer_num=5,
                    **kwargs)
    return model


def PPHGNet_small(pretrained=False, use_ssld=False, det=False, **kwargs):
    """
    PPHGNet_small
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `PPHGNet_small` model depends on args.
    """
    stage_config_det = {
        # in_channels, mid_channels, out_channels, blocks, downsample
        'stage1': [128, 128, 256, 1, False, 2],
        'stage2': [256, 160, 512, 1, True, 2],
        'stage3': [512, 192, 768, 2, True, 2],
        'stage4': [768, 224, 1024, 1, True, 2],
    }

    stage_config_rec = {
        # in_channels, mid_channels, out_channels, blocks, downsample
        'stage1': [128, 128, 256, 1, True, [2, 1]],
        'stage2': [256, 160, 512, 1, True, [1, 2]],
        'stage3': [512, 192, 768, 2, True, [2, 1]],
        'stage4': [768, 224, 1024, 1, True, [2, 1]],
    }

    model = PPHGNet(stem_channels=[64, 64, 128],
                    stage_config=stage_config_det if det else stage_config_rec,
                    layer_num=6,
                    det=det,
                    **kwargs)
    return model


def PPHGNet_base(pretrained=False, use_ssld=True, **kwargs):
    """
    PPHGNet_base
    Args:
        pretrained: bool=False or str. If `True` load pretrained parameters, `False` otherwise.
                    If str, means the path of the pretrained model.
        use_ssld: bool=False. Whether using distillation pretrained model when pretrained=True.
    Returns:
        model: nn.Layer. Specific `PPHGNet_base` model depends on args.
    """
    stage_config = {
        # in_channels, mid_channels, out_channels, blocks, downsample
        'stage1': [160, 192, 320, 1, False, [2, 1]],
        'stage2': [320, 224, 640, 2, True, [1, 2]],
        'stage3': [640, 256, 960, 3, True, [2, 1]],
        'stage4': [960, 288, 1280, 2, True, [2, 1]],
    }

    model = PPHGNet(stem_channels=[96, 96, 160],
                    stage_config=stage_config,
                    layer_num=7,
                    **kwargs)
    return model